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General Introduction 

Listeria is a regular gram-positive rod with a rounded end; it is an aerobic, 

microaerophilic, facultatively anaerobic organism that is catalase positive and 

oxidase negative. Listeria does not produce spores and capsules are not formed. 

Listeria usually grows well on most commonly used bacteriological media and can 

multiply over a wide range of temperatures (1–45C). The genus Listeria contains 

ten species: Listeria monocytogenes, L. ivanovii, L. innocua, L. welshimeri, L. 

seeligeri, L. grayi, L. fleischmannii, L. marthii, L. rocourtiae, and L. 

weihenstephanensis. L. monocytogenes and L. ivanovii are naturally and 

experimentally pathogenic. L. monocytogenes is the causative agent of listeriosis, a 

serious invasive illness that affects both humans and animals; L. ivanovii is mainly 

responsible for abortion in animals (68). L. monocytogenes has traditionally been 

regarded as pathogenic at the species level, with a generally accepted belief that all 

L. monocytogenes isolates are potentially virulent and capable of causing diseases. 

However, from experimental data collected in recent years, it has become clear that 

L. monocytogenes demonstrates enormous serotype/strain variation in virulence 

and pathogenicity. L. monocytogenes comprises 13 serovars, of which serotypes 1/2a, 

1/2b, 1/2c, and 4b account for the vast majority of cases of human disease (67). 

Listeriosis commonly affects pregnant women, neonates, elderly individuals, and 

immunosuppressed individuals. Unlike other foodborne illnesses, which rarely 

result in fatalities, the mortality rate of listeriosis is approximately 30% (45). The 

consumption of contaminated food is believed to be the principal cause of infection. 
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In the United States, human listeriosis affects approximately 1,600 individuals 

annually, causing 255 deaths each year (72). The European Center for Disease 

Prevention and Control reported that listeriosis had the highest impact in the 

elderly (age ≥ 64 years), with the highest confirmed case rates and mortality being 

reported in 2009 (18). In Japan, Listeria detection has not been routinely performed 

on samples from people with diarrhea, and the outbreak trend of listeriosis has still 

not been determined. In the single foodborne listeriosis case reported in Japan, 

Listeria-contaminated food was first detected during routine monitoring, and 

epidemiological studies were later carried out on people who consumed the food 

(49). 

Raw milk has been suggested to be a source of L. monocytogenes in the dairy 

processing environment (68). The organism is excreted for months in the milk of 

healthy cows over several lactation periods, and direct contamination of bulk milk 

may occur as a result of udder infections (84). Indirect contamination may occur if 

the organism is present on the udder surfaces because of contaminated feed, feces, 

bedding, and other environmental sources.  

The bovine colostrum is an important source of nutrients and immune factors for 

neonatal calves; however, the colostrum may also be the earliest source of exposure 

of dairy calves to infectious agents. This exposure is a matter of concern because 

pathogenic bacteria present in the colostrum may cause diseases such as diarrhea 

or septicemia and because the bacteria may interfere with the absorption of 

immunoglobulin (26). Meanwhile, the value of bovine colostrum as a biological 
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product with medicinal benefits has been well documented in clinical trials and 

supported by relatively large databases. Clinical trials have shown that 

concentrated bovine colostrum may enhance the immune systems of patients with 

weakened immunity (77). Therefore, the popularity of colostrum products has been 

increasing because of an increased demand for functional foods and dietary 

supplements. The medicinal uses of bovine colostrum have been studied; however, 

the microbial diversity present in dried commercial bovine colostrum products has 

not yet been completely investigated (34). Knowledge of the prevalence of 

pathogenic bacteria in the colostrum is necessary because of the importance of 

colostral immunoglobulins to the health of neonatal calves. Many studies have 

detected the presence of L. monocytogenes isolates in raw milk (69, 88, 89); however, 

there have been no documented cases of L. monocytogenes isolates in the bovine 

colostrum.  

Meat products have been suggested as the cause of listeriosis outbreaks in many 

countries (9, 27, 73). It is generally thought that cattle feces may be an important 

source of foodborne pathogens for beef meat contamination in processing plants (1); 

therefore, reduction of L. monocytogenes at the farm level is important for 

decreasing human exposure to the bacterium. Investigations of the molecular 

ecology and genetic diversity of isolates collected from dairy farms have been 

previously conducted (4, 35, 44, 83). However, only a few studies have investigated 

the prevalence and molecular characteristics of L. monocytogenes isolated from beef 

cattle farms (7, 46, 52). Specifically in Japan, no studies have been performed on the 
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molecular epidemiology of L. monocytogenes found in beef cattle farms. 

Furthermore, molecular characterization of L. monocytogenes isolates from beef 

meat has not been performed, although the prevalence of the isolates in beef meat 

has been investigated in Japan (37, 60). 

 

Objectives of this study 

The objectives of this thesis were as follows. Chapter 1 described work that 

determined the prevalence and molecular characteristics of L. monocytogenes 

isolates in the bovine colostrum. In addition, colostrum products were examined to 

determine their biological safety. In Chapter 2, the prevalence and molecular 

characteristics of the bacterium in black beef cattle feces collected from farms across 

Japan were assessed in order to provide basic data for the control of L. 

monocytogenes at the farm level. The work described in Chapter 3 focused on 

understanding the distribution subtypes of L. monocytogenes from beef meat and 

examined the relatedness among the isolates from black beef cattle, beef meat, and 

human clinical cases. The overall objective of this thesis was to study molecular 

characteristics of L. monocytogenes isolates, and to provide data that contribute to 

developing methods to control L. monocytogenes. 
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Introduction 

Listeria monocytogenes is the causative agent of listeriosis, a serious invasive 

illness that affects both humans and animals. In humans, listeriosis commonly 

affects pregnant women, neonates, elderly individuals, and immunosuppressed 

individuals. Unlike other foodborne illnesses, which rarely result in fatalities, the 

mortality rate of listeriosis is approximately 30% (45). The consumption of 

contaminated food is believed to be the principal cause of the infection. Raw milk 

has been suggested to be a source of L. monocytogenes in the dairy processing 

environment (69), and milk and milk-related products have been implicated in 

many listeriosis outbreaks (10, 47). The organism is excreted in the milk of healthy 

cows for months over several lactation periods, and direct contamination of bulk 

milk may occur as a result of udder infections (84). Indirect contamination may 

occur if the organism is present on the udder surfaces because of contaminated feed, 

feces, bedding, and other environmental sources.  

In the United States, human listeriosis affects approximately 1,600 individuals, 

causing 255 deaths each year (72). The European Center for Disease Prevention and 

Control reported that listeriosis had the highest impact in the elderly (those over 64 

years) with the highest confirmed case rates and high mortality in 2009 (18). In 

Japan, no outbreaks of listeriosis have been reported, except for one case of 

foodborne listeriosis caused by consumption of natural cheese in 2001 (49). Okutani 

et al. (62) collected data on Japanese foods contaminated with L. monocytogenes 

and found that the prevalence was almost the same as that in the United States, 
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France, and Canada, although the annual incidence of listeriosis is lower in Japan 

than in those countries (63). Thus, it has been suggested that food-borne listeriosis 

might occur at the same level in Japan as in these countries.  

Bovine colostrum is an important source of nutrients and immune factors for 

neonatal calves; however, colostrum may also be the point of the earliest exposure of 

dairy calves to infectious agents. This exposure is a matter of concern because the 

pathogenic bacteria present in colostrum may cause diseases such as diarrhea or 

septicemia. It is also a matter of concern because the bacteria in colostrum may 

interfere with the absorption of immunoglobulin (26). Streeter et al. (76) reported 

that Mycobacterium paratuberculosis was isolated from colostrum obtained from 

clinically normal cows and there was a higher prevalence of isolation from 

colostrum than from milk. Houser et al. (36) reported that the mean standard plate 

count; preliminary incubation count; laboratory pasteurization count; and 

Staphylococcus aureus, coagulase negative staphylococci, streptococci, coliforms, 

and non-coliforms counts in colostrum were considerably higher than those in raw 

bulk tank milk counts. Thus, colostrum may have an increased risk of bacterial 

contamination. 

The value of bovine colostrum as a biological product with medicinal benefits has 

been well documented in clinical trials and supported by relatively large databases. 

Colostrum has antimicrobial properties and is known to modulate immune 

responses (77). Clinical trials have shown that concentrated bovine colostrum may 

enhance the immune systems of patients with weakened immunity(77). Therefore, 
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colostrum products have been growing in popularity because of an increased 

demand for functional foods and dietary supplements. The medicinal uses of bovine 

colostrum have been studied; however, the microbial diversity present in dried 

commercial bovine colostrum products has not yet been completely investigated 

(34). 

Knowledge of the prevalence of organisms in colostrum is necessary because of 

the importance of colostral immunoglobulins to the health of neonatal calves. Many 

studies have detected the presence of L. monocytogenes isolates in raw milk (69, 88, 

89); however there have been no documented cases of L. monocytogenes isolates in 

bovine colostrum. Therefore, the aim of this study was to determine the prevalence 

and molecular characteristics of L. monocytogenes isolates in bovine colostrum. In 

addition, colostrum products were examined to determine their biological safety. 

Materials and Methods 

Sample collection 

Colostrum samples were collected from 210 dams in 21 dairy farms in Hokkaido 

prefecture, Japan within 24 h of parturition. Approximately 50 ml of colostrum was 

collected using a new sterile glove after forestripping and predipping with a 0.5% 

iodine-based teat dip, drying the teat ends with a clean paper towel, and scrubbing 

all the teat ends with an alcohol-soaked gauze pad. The sample was then aseptically 

stripped directly into a sterile 50 ml plastic sampling vial with approximately equal 

amounts of milk collected from the four quarters. Fecal samples were collected from 
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42 neonatal calves (age, 2–8 days) and the 42 cows from which were collected 

colostrum samples. All the samples were chilled and transported to the laboratory 

for microbiological analysis. 

Colostrum supplements 

Ninety-three samples, i.e., 3 lots of 31 bovine colostrum supplement products 

(prepared in the United States, New Zealand, Australia, and Japan), were 

purchased online to investigate the prevalence of L. monocytogenes. These 

colostrum supplements were powders or tablets. 

Bacterial isolates 

In the preliminary experiment, the use of the cold-enrichment process before 

antibiotic enrichment yielded more L. monocytogenes isolates from colostrum than 

the use of antibiotic enrichment alone. Thus, colostrum samples (25 ml) were 

enriched at 4C for 9 weeks. Colostrum supplements (25 g) were added to 225 ml of 

tryptose broth (Nissui Seiyaku Co., Ltd., Tokyo, Japan) supplemented with 0.1% 

pyruvic acid and enriched at 4C for 2 weeks. Next, 5 ml of the enriched samples 

were added to 45 ml of University Vermont Modified Listeria Enrichment Broth 

(UVM; BD, Franklin Lakes, NJ). Five grams of fecal samples were added to 25 ml of 

Nutrient Broth (Nissui Seiyaku Co., Ltd.) and enriched at 4C for 2 weeks, and 5 ml 

of the enriched culture was added to 45 ml of UVM Listeria Enrichment Broth. 

After incubation at 30C for 24 h, 0.1 ml of the culture was transferred to 10 ml of 

Fraser Broth (BD) with Fraser Selective Supplement (Oxoid, Basingstoke, UK) and 

incubated at 35C for either 24 or 48 h. Next, 0.1 ml of each culture was streaked 
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onto Oxford Medium Base (BD) with Listeria Selective Supplement (Oxoid), and 

both were incubated at 35C for 24–48 h. Typical Listeria-like colonies with black 

halos were selected from these plates. Putative colonies were spotted onto 

CHROMagar Listeria plates (CHROMagar Microbiology, Paris, France) and 

incubated at 37C for 24–48 h. Five blue colonies with halos were characterized 

using the Christie, Atkins, Munch-Peterson test, -hemolysis reaction, catalase 

reaction, Gram staining, and motility test in semisolid media. L. monocytogenes 

isolates were stored in Brain Heart Infusion (BHI; Difco, Detroit, MI) medium with 

10% glycerol at –80C.  

Bacterial strains 

A total of 19 L. monocytogenes isolates from human listeriosis cases were used. L. 

monocytogenes isolates were kindly provided by the following researchers: Dr. 

Makino, S. I., Obihiro University of Agriculture and Veterinary Medicine, 3 isolates 

(49, 63); Dr. Ueda, F., Nippon Veterinary and Life Sciences University, 1 isolate (59); 

Dr. Yoshida, T., Nagano Environmental Conservation Research Institute, 10 

isolates; Dr. Nakama, A., Tokyo Metropolitan Institute of Public Health, 1 isolate; 

Dr. Ito, M., Sapporo Clinical Laboratory Inc., 2 isolates; Dr. Kobayashi, K., Daiichi 

Clinical Laboratories Inc., 2 isolates. The isolates comprised 8 strains of serotype 

1/2b and 11 of serotype 4b. Two isolates were isolated from the feces of raccoons, 

which were caught in another dairy farm (N farm) in Hokkaido, using the same 

laboratory protocols as described above. 
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Serotyping of the isolates 

Serotyping was performed using commercial Listeria antisera (Denka Seiken 

Co., Ltd., Tokyo, Japan), according to the manufacturer’s recommendations. 

Pulsed field gel electrophoresis (PFGE) analysis 

The author followed the Center for Disease Control and Prevention PulseNet 

protocol for PFGE (28). The chromosomal DNA of L. monocytogenes was restriction 

digested using AscI (New England BioLabs, Beverly, MA) and ApaI (Takara, Shiga, 

Japan). PFGE was performed on a CHEF-DRII electrophoresis system (Bio-Rad 

Laboratories, Hercules, CA) with recirculated 0.5 

tris–borate–ethylenediaminetetraacetic acid (TBE) extended-range buffer (Bio-Rad 

Laboratories) at 14C. The macrorestriction fragments were resolved on a 1% 

SeaKem Gold Agarose (Cambrex, Rockland, ME) gel in 0.5 TBE buffer. 

XbaI-digested Salmonella Braenderup H9812 DNA was used as a molecular weight 

marker. The pulse time was increased from 4.0 to 40.0 s during an 18 h run at 6.0 

V/cm. The PFGE patterns were compared using the BioNumerics program (version 

5.0; Applied Maths, Kortrijk, Belgium). Similarities among the restriction 

fragments of isolates were determined using the unweighted pair group method 

with arithmetic mean. 

PCR of L. monocytogenes virulence-associated genes and epidemic clone markers 

DNA was extracted from overnight BHI cultures using a commercially prepared 

extraction preparation (InstaGene Matrix; Bio-Rad Laboratories), following the 

manufacturer’s instructions. The primers for 11 L. monocytogenes 
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virulence-associated genes (actA, hly, iap, inlA, inlC, mpl, plcA, plcB, opuCA, prfA, 

and clpC) have been described previously (50). The PCR protocol consisted of an 

initial denaturation step (94C for 2 min) followed by 40 cycles of denaturation 

(94C for 30 s), annealing (53.5C for 30 s with hly; 55.5C for 30 s with actA, inlA, 

inlC, prfA, opuCA, plcA, and clpC; and 59.5C for 30 s with iap, mpl, and plcB), 

extension (72C for 30 s), and a final extension (72C for 2 min) step. The primers 

used for the identification of isolates with the L. monocytogenes epidemic clone (EC) 

I and II markers have been described previously (11). The PCR protocol consisted of 

an initial denaturation (94C for 2 min) step followed by 30 cycles of denaturation 

(94C for 30 s), annealing (51C for 30 s with ECI; 55C for 30 s with ECII), 

extension (72C for 50 s), and a final extension (72C for 2 min) step. The PCR 

products were electrophoresed using a 2% agarose gel, stained with ethidium 

bromide, and visualized under UV light. 

Antimicrobial susceptibility testing 

Antimicrobial susceptibility tests were performed for 48 of the 80 L. 

monocytogenes isolates. Fourteen different antimicrobials were selected for 

susceptibility testing using the microbroth dilution method, according to the 

Clinical and Laboratory Standards Institute (CLSI) standards (13) for the following 

antimicrobial agents (dilution ranges): penicillin (0.12 to 256 µg/ml), ampicillin 

(0.12 to 256 µg/ml), oxacillin (0.12 to 128 µg/ml), amoxicillin (0.12 to 64 µg/ml), 

gentamicin (0.12 to 128 µg/ml), kanamycin (0.12 to 128 µg/ml), streptomycin (0.12 to 

128 µg/ml), erythromycin (0.12 to 128 µg/ml),  vancomycin (0.12 to 128 µg/ml), 
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tetracycline (0.12 to 64 µg/ml), chloramphenicol (0.12 to 64 µg/ml), fosfomycin (0.12 

to 128 µg/ml),  ciprofloxacin (0.12 to 64 µg/ml), and trimethoprim/sulfamethoxazole 

(0.08 to 80 µg/ml). The microbroth dilution panels were purchased in a frozen 

96-well format (Eiken Chemical Co., Ltd., Tokyo, Japan). The panels were stored at 

–80C and thawed immediately before use. The panels were incubated for 20 to 24 h 

at 35C. The minimum inhibitory concentrations (MICs) were read manually. The 

MIC for 50% of the strains (MIC50), and the MIC for 90% of the strains (MIC90) were 

determined for each antibiotic. The breakpoints for the susceptibility of L. 

monocytogenes to penicillin and ampicillin were obtained from the CLSI guidelines 

(13). Other antibiotics had bimodal MIC distributions with no breakpoints specified 

in these guidelines, so the microbiological breakpoints were also applied based on 

the research results of the Japanese Veterinary Antimicrobial Resistance 

Monitoring System (55). The microbiological breakpoint is defined as the 

intermediate MIC between the two peak distributions. The breakpoint was not 

determined if the MIC distribution was monomodal. 

Results 

Prevalence of L. monocytogenes in bovine colostrum 

In this study, the author surveyed 210 colostrum samples from 21 farms in 

Hokkaido prefecture. The prevalence of L. monocytogenes in bovine colostrum is 

shown in Table 1. L. monocytogenes was found in six (28.6%) farms. Of the 210 

samples, 16 (7.6%) were positive for L. monocytogenes. At KB, KO, and KU farms, 
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the isolation rate of the bacterium was higher (66.7, 50.0, and 50.0%, respectively) 

than on H, T, and YW farms (6.3, 11.8, and 3.7%, respectively). The bacterium was 

not isolated in 129 samples collected from 15 farms. 

Prevalence of L. monocytogenes in feces from cows and their neonatal calves 

The author analyzed 42 fecal samples from 42 of the 210 cows from which were 

collected the colostrum samples. Furthermore, the author investigated 42 fecal 

samples from 42 neonatal calves that were born and bred from the cows. L. 

monocytogenes was isolated from two (4.8%) fecal samples from cows and three 

(7.1%) fecal samples from their neonatal calves. Ten cows were found to shed L. 

monocytogenes in their colostrum. However, no cows shed the bacterium in both 

their feces and colostrum. One of 10 calves whose dam shed L. monocytogenes was 

positive for the bacterium (data not shown).  

Serotyping of the isolates 

A total of 80 L. monocytogenes isolates were recovered from colostrum samples, 

and the L. monocytogenes serotypes are summarized in Table 1. The serotype 

distribution of the L. monocytogenes isolates in the colostrum was as follows: 44 

(55%) were serotype 1/2b and 36 (45%) were serotype 4b (Table 1). Serotypes 1/2b 

and 4b were identified in the KB, KO, and KU farms. These two serotypes were also 

identified in colostrum samples from cows KB9 and KO1 (data not shown).  

PFGE typing of the isolates 

PFGE characterization of the 80 isolates from bovine colostrum detected six 

different PFGE types (Fig. 1). Of the six subtypes detected, three (50%) were 
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serotype 1/2b and three (50%) were serotype 4b. Four of the PFGE types were 

isolated from KB farm. Two of the PFGE types were isolated from KO and KU farms. 

One PFGE type was isolated from H, T, and YW farms. Multiple PFGE types were 

isolated from the individual colostrum samples from three cows and a maximum of 

three different PFGE types were isolated from one colostrum sample. PFGE types I 

and II were isolated from KB farm. PFGE type III was isolated from KB, KO, and 

KU farms. PFGE type IV was isolated from KB, KO, KU, and T farms. PFGE type V 

was isolated from H farm. PFGE type VI was isolated from YW farm. One colostrum 

isolate from farm KB was identical to a fecal isolate from a neonatal calf. One fecal 

isolate from a raccoon captured on another dairy farm was identical to a colostrum 

isolate from KB farm. PFGE types I and III corresponded to the isolates from two 

human clinical cases. PFGE type IV shared 86% similarity with outbreak strains in 

Hokkaido. 

Virulence-associated genes and EC markers in the isolates 

Twenty of 80 L. monocytogenes isolates from bovine colostrum were investigated. 

Among these isolates, 17 (85.0%) possessed all 11 virulence genes (Table 1). The 

remaining isolates lacked iap, mpl, or opuCA. The ECI marker was not detected in 

the L. monocytogenes isolates in colostrum. PFGE type I isolates contained the 

ECII marker. The raccoon-derived isolate shared high similarity with the PFGE 

type I isolate with the ECII marker (Fig. 1). 

Antimicrobial resistance phenotypes 

The MIC distributions of penicillin (<0.12 to 0.5 µg/ml), oxacillin (4 to 8 µg/ml), 
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ampicillin (0.25 to 1 µg/ml), amoxicillin (<0.12 to 0.5 µg/ml), gentamicin (<0.12 to 0.5 

µg/ml), kanamycin (0.5 to 4 µg/ml), streptomycin (2 to 8 µg/ml), erythromycin (0.25 

µg/ml), vancomycin (0.5 to 1 µg/ml), tetracycline (0.5 to 1 µg/ml) chloramphenicol (4 

to 8 µg/ml), ciprofloxacin (1 to 4 µg/ml), and trimethoprim/sulfamethoxazole (0.31 to 

1.25 µg/ml) were monomodal, suggesting that all isolates were susceptible to these 

antibiotics (Table 2). The MIC distributions of fosfomycin (>128 µg/ml) were higher 

than the range the author surveyed. The MIC distribution of oxacillin was that for 

resistance of staphyrococci. (14). It was described that L. monocytogenes is 

naturally resistant to oxacillin and fosfomycin (80). 

Prevalence of L. monocytogenes in bovine colostrum supplements 

Many different types of colostrum supplements are sold online. The author 

purchased 93 colostrum supplements, which had been made in the United States (n 

= 45), New Zealand (n = 42), Australia (n = 3), and Japan (n = 3), and investigated 

the prevalence of L. monocytogenes. The bacterium was not isolated from any of the 

colostrum supplements. 

Discussion 

The author conducted a survey to determine the prevalence and characteristics 

of L. monocytogenes in bovine colostrum collected from dairy farms in Hokkaido, 

Japan. Hokkaido is a major dairy region and approximately 60% of the Japanese 

dairy cattle are bred in this area. In the present study, 210 samples were collected 

from 21 dairy farms. Sixteen (7.6%) of the 210 samples and six (28.6%) of the 21 
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farms were positive for L. monocytogenes. Many previous studies have detected L. 

monocytogenes in raw milk and milk products but the prevalence of L. 

monocytogenes in bovine colostrum has not yet been investigated. This survey 

provides the first data of the prevalence and characteristics of L. monocytogenes in 

bovine colostrum. 

In the United States, 861 bulk tank milk samples were collected from farms in 

21 states as part of the National Animal Health Monitoring System for dairy during 

2002. The survey indicated that L. monocytogenes was present in 6.5% of the bulk 

tank milk samples (81). Other surveys have reported the isolation of L. 

monocytogenes from 4.0% of the 150 raw milk samples from 1989 to 1990 in Japan 

(70), 0.3% of the 943 bulk tank milk samples from 1990 to 1991 in Japan (89), 5.1% 

of the 2009 bulk tank milk samples from 1992 to 1993 in England and Wales (58), 

1% of the 294 farm bulk tank milk samples from 1997 to 1998 in Sweden (83), 2.8% 

of 248 bulk tank milk samples from 2001 to 2002 in the United States (40), and 

6.1% of the 98 bulk tank milk samples during 2005 in Spain (82). Thus, the isolation 

rates of the bacterium from bulk tank milk samples were 0.3–6.5%. Several studies 

have surveyed L. monocytogenes contamination in bulk tank milk samples, however, 

the prevalence of L. monocytogenes in colostrum and milk from individual cows has 

not yet been fully investigated worldwide. Compared with previous studies, this 

survey provides new data. 

 L. monocytogenes can cause mastitis in cows, and it can be shed into the milk 

of asymptomatic cows (84). Bourry et al. (5) induced chronic subclinical mastitis via 
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intramammary inoculation with a single dose of L. monocytogenes and reported 

that the infections were usually subclinical, and the udder appeared normal. 

Improperly fermented silage is considered a common cause of ruminants shedding L. 

monocytogenes in their feces. Normal healthy cattle may occasionally shed the 

bacterium in their feces, with a prevalence rate of up to 52% (84). Mohammed et al. 

(51) reported that the likelihood of Listeria detection was three times higher in 

bedding samples than in silage, and the pathogen appeared to be most prevalent in 

feed bunks, water troughs, and bedding. In this study, the author assumed that 

bacteria penetrating the teat canal could cause L. monocytogenes teat colonization 

from the bedding or local environment. As calving approached and colostrum 

formation occurred, the gland became susceptible to infection. Despite the increased 

milk leukocyte concentration in colostrum, the mammary gland is still susceptible 

to new infections during the prepartum period (54). The author did not determine 

the somatic cell count in the colostrum. Whether inflammation occurred was 

unclear. More work is needed to determine whether contamination of the colostrum 

develops into mastitis. Streeter et al. (76) reported that M. paratuberculosis was 

isolated from colostrum of clinically normal cows and there was higher prevalence of 

isolation from colostrum than from milk. M. paratuberculosis can survive in 

macrophages for prolonged periods in vitro. Macrophages are the predominant cell 

type in noninfected bovine mammary glands during the peripartum period. It has 

been hypothesized that the long duration of the nonlactating period and 

accumulation of large numbers of macrophages during this period may account for 
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the higher prevalence of isolates from colostrum than from milk. L. monocytogenes 

can also survive and proliferate within macrophages (43). The present study may 

support a similar hypothesis. Fedio and Jackson (20) reported that contamination 

from within the udder is likely to be rare. Thus, the other bacteria found in the 

samples must be identified to exclude the possibility of colostrum being 

contaminated from outside the teat. Fox et al. (22) reported a correlation between 

the level of hygiene standards in farms and the occurrence of L. monocytogenes. A 

sanitary dairy farm environment is essential for preventing colostrum 

contamination. 

L. monocytogenes isolates of serotypes 1/2b and 4b were detected from 

colostrum samples. In previous studies in other countries have shown that 

serotypes 1/2a, 1/2b, and 4 were recovered frequently from dairy farms (4, 22, 81). 

The results of this study are in agreement with these findings. In Japan, serotypes 

1a, 1/2a, 4ab, and 4b were detected in raw milk samples and dairy farm 

environment (70, 79, 89). Serotype 1/2c was isolated mainly from the carcass 

surfaces of cattle and their intestinal contents (62). However, the author did not 

detect serotype 1/2a nor 1/2c. This study was conducted in a limited area of Japan; 

therefore, it is necessary to investigate the epidemiology of this bacterium at a 

larger scale.  

The isolation rate of L. monocytogenes varied according to the farm. There were 

farms from which L. monocytogenes was never isolated. However, L. monocytogenes 

was isolated from approximately half of the cows investigated in some farms. The 
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prevalence of L. monocytogenes in KB, KO, and KU farms was higher than that in 

the other farms. Four different PFGE types and both serotypes were detected on KB 

farm. Multiple PFGE types were detected in the isolates from three farms; therefore, 

these locations probably were continuously contaminated with L. monocytogenes. In 

other countries, there have been reports of genetic diversity of L. monocytogenes 

being detected in a single dairy farm. Borucki et al. (4) reported that 57 different 

PFGE types were detected in dairy farm environments, and the maximum number 

of PFGE types and serotypes isolated from the fecal sample of one cow were six and 

four, respectively. Ho et al. (35) reported that a single cow can harbor more than one 

L. monocytogenes ribotype, and 20 distinct subtypes were isolated in a single herd. 

In Japan, several studies have surveyed L. monocytogenes contamination in dairy 

farms but the prevalence of L. monocytogenes has not yet been fully investigated in 

dairy farms. This is the first report on the detection of multiple PFGE types and 

serotypes from a single farm. 

To determine whether the L. monocytogenes isolates in colostrum were related 

to isolates from human listeriosis cases, the author characterized the colostrum 

isolates by PFGE profiles. Some L. monocytogenes isolates in colostrum had 

identical to those of human clinical isolates, suggesting that bovine colostrum could 

be a significant reservoir of L. monocytogenes that cause human infections. In other 

countries, the PFGE profiles of food animal isolates from ruminant farms, foods, 

and different environments were compared with the profiles of pathogenic human 

isolates to identify any possible correlations (24, 64). In Japan, Nakama et al. (53) 
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reported that some PFGE types from foods on retail sale were recognized isolates of 

clinical origin. In this study, the genetic diversity of L. monocytognes strains was 

less than that reported by Boruki et al. (4) and Ho et al. (35). However, these results 

cannot be compared directly because the sampling method was different from their 

studies, i.e., the study of Borucki et al. (4) was undertaken on farms where bovine 

listeriosis cases occurred, whereas Ho et al. (35) investigated fecal samples for 

approximately one month. The genetic diversity could be related to the low 

incidence of listeriosis in Japan. Further investigation is required to reveal the 

genetic diversity of the bacterium from different sources. 

Of note, the L. monocytogenes isolates in colostrum possessed an ECII marker. 

To date, most documented human outbreaks of foodborne listeriosis have involved a 

small number of closely related strains, primarily of serotype 4b: ECI and ECII (12). 

ECI includes isolates from large listeriosis outbreaks that occurred in European 

countries, Canada, and the United States, while ECII includes isolates from two 

listeriosis outbreaks in the United States that were linked to the consumption of 

contaminated hot dogs and turkey. The ECI and ECII markers may be associated 

with the increased pathogenicity of the outbreak-associated L. monocytogenes 4b 

strains, making them particularly dangerous to humans. Serotypes 1/2a, 1/2b, and 

4b are responsible for most human listeriosis cases (45). The isolates from bovine 

colostrum were classified as serotypes 1/2b and 4b. The presence of L. 

monocytogenes virulence-associated genes, and the PFGE types and serotypes of 

the bovine L. monocytogenes isolates in colostrum, suggested that these strains 
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may be able to invade host cells and cause listeriosis. These data reinforce previous 

reports implicating farms as possible reservoirs for human epidemic L. 

monocytogenes strains (56). A fecal isolate from a raccoon captured at another dairy 

farm was identical to a colostrum isolate, and it possessed the ECII marker. The 

raccoon is native to North America, but many have been imported to Japan as pets. 

In Hokkaido, the intentional release and escape of pet raccoons has led to a 

naturalized population. These raccoons could contribute to the amplification and 

dispersal of L. monocytogenes into the farm environment and thus to increase in the 

number of human listeriosis cases. The PFGE profiles of fecal isolates from neonatal 

calves were identical to those of the colostrum isolates from their dams; therefore, 

bovine colostrum might cause neonatal cattle listeriosis. Thus, cattle must be kept 

healthy, to prevent the contamination of bovine colostrum. 

L. monocytogenes was not isolated from the colostrum supplement products 

that the author investigated. Hayes et al. (34) reported that Bacillus, Pseudomonas, 

Kocuria, and Enterococcus species were identified in dried colostrum nutraceutical 

products, although the presence of these species did not indicate the origin of these 

organisms or the history of the processing of the products. Sanitary manufacturing 

practices are necessary to prevent the contamination of bovine colostrum products 

with L. monocytogenes and other pathogenic organisms. 

The L. monocytogenes isolates from bovine colostrum were susceptible to 

antimicrobial agents, except oxacillin and fosfomycin. Until recently, L. 

monocytogenes was considered to be susceptible to antibiotics that are effective 
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against gram-positive bacteria. However, many antibiotic-resistant strains of L. 

monocytogenes have been reported since 1988 (65). Srinivasan et al. (75) reported 

that 15% of the L. monocytogenes isolated from dairy farm environments were 

multidrug resistant. Harakeh et al. (30) reported a high percentage of resistance to 

penicillin, ampicillin, and chloramphenicol in L. monocytogenes isolated from 

dairy-based food products. There have been very few studies on antibiotic resistance 

of L. monocytogenes in Japan (61). Antimicrobial agents are used for growth 

promotion to improve animal husbandry in Japan. Veterinary antimicrobial use is a 

selective force that promotes the appearance and prevalence of 

antimicrobial-resistant bacteria in food-producing animals (39, 55). L. 

monocytogenes becomes resistant to antibiotics through the acquisition of mobile 

genetic elements (65). L. monocytogenes isolates in Japan could acquire antibiotic 

resistance genes, thereby functioning as an antimicrobial resistance gene pool for 

other commensal and pathogenic bacteria on dairy farms. Thus, public health can 

be protected by continuously monitoring antibiotic resistance in L. monocytogenes 

isolates from dairy farms. 

Further investigations are needed to reduce the contamination of bovine 

colostrum with L. monocytogenes. This is the first study on the prevalence and 

serological and molecular characteristics of L. monocytogenes in bovine colostrum 

from dairy farms. Although this study was limited to a region of Japan, these 

findings have important implications for improving public health, and they provide 

a significant advancement in the understanding of the molecular epidemiology of L. 
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monocytogenes in bovine colostrum. 

Summary 

This study determined the prevalence and characteristics of L. monocytogenes in 

bovine colostrum in Japan. The author collected bovine colostrum samples from 210 

dams from 21 dairy farms in Hokkaido prefecture in Japan between March and 

June 2009. L. monocytogenes was detected in six (28.6%) of the 21 farms. Of the 210 

samples, 16 (7.6%) were positive for L. monocytogenes. The author recovered 80 L. 

monocytogenes isolates. Forty-four (55%) isolates were classified as serotype 1/2b 

and 36 (45%) as serotype 4b. PFGE characterization of 80 isolates identified six 

different PFGE types. Two PFGE types corresponded to human listeriosis cases. 

Most L. monocytogenes isolates possessed virulence-associated genes (actA, hly, iap, 

inlA, inlC, mpl, plcA, plcB, opuCA, prfA, and clpC). One PFGE type isolate 

possessed an epidemic clone II marker. These findings suggest that isolates from 

bovine colostrum may have the potential to cause human and animal listeriosis. 

The isolates were susceptible to penicillin, ampicillin, amoxicillin, gentamicin, 

kanamycin, streptomycin, erythromycin, vancomycin, tetracycline, chloramphenicol, 

ciprofloxacin, and trimethoprim/sulfamethoxazole. This is the first study on the 

prevalence and characteristics of L. monocytogenes isolated from bovine colostrum 

obtained from dairy farms. The results of this study have important implications for 

improving public health and elucidating the molecular epidemiology of L. 

monocytogenes in bovine colostrum. 
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Table 1. Prevalence and characteristics of L. monocytogenes in bovine colostrum from Hokkaido, Japan 

 

Farm 

No. of 

samples 

examined 

No. (%) of 

positive 

samples 

No. of 

isolates 

Serotypes(s) 

(No. of isolates) 

PFGE type(s) 

(No. of isolates) a 

Virulence 

gene(s)b 

Positive farms (by name) 

H  16 1 ( 6.3)  5 1/2b (5) V (5) mpl-c 

KB  9 6 (66.7) 30 1/2b (6), 4b (24) I (10), II (4), 

III (10), IV (6) 

+, opuCA-d, 

iap-e 

KO  2 1 (50.0)  5 1/2b (3), 4b (2) III (2), IV (3) + 

KU  10 5 (50.0) 25 1/2b (15), 4b (10) III (10), IV (15) + 

T  17 2 (11.8) 10 1/2b (10) IV (10) + 

YW  27 1 ( 3.7)  5 1/2b (5) VI (5) + 

Negative farms (combined) 

15 129 0     

Total farms 

21 210 16 (7.6) 80 1/2b (44), 4b (36)   

 
aCombined profile for two restriction enzymes: AscI and ApaI 
bGenes actA, hly, iap, inlA, inlC, mpl, plcA, plcB, opuCA, prfA, and clpC. (+): strains harbor all 11 genes. 
cIsolate with mpl deficiency 
dIsolate with opuCA deficiency 
eIsolate with iap deficiency  
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Figure 1. Dendrogram of the L. monocytogenes PFGE types for isolates from bovine colostrum, human clinical cases, and the feces 

of calves and raccoons. ND, not done. Virulence genes are actA, hly, iap, inlA, inlC, mpl, plcA, plcB, opuCA, prfA, and clpC.  

Isolates with an mpl deficiency (mpl-), an opuCA deficiency (opuCA-), and an iap deficiency (iap-) are indicated.
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      Table 2. Antimicrobial susceptibility of 48 Listeria monocytogenes isolates from bovine colostrum in Hokkaido, Japan a 

a Antimicrobial susceptibility tests were performed for 48 of the 80 L. monocytogenes isolates. MIC50 and MIC90 are the MICs for 

50 and 90% of the isolates, respectively. ND, analysis not done.  

Antimicrobial 

agent 

No. of isolates susceptible at MIC (g/ml) of :  MIC50 

(g/ml) 

MIC90 

(g/ml) 0.16 0.31 0.62 1.25 2.5 <0.12 0.25 0.5 1 2 4 8 16 32 64 128 256  

Penicillin ND ND ND ND ND 2 28 18 0 0 0 0 0 0 0 0 0  0.25 0.5 

Oxacillin ND ND ND ND ND 0 0 0 0 0 47 1 0 0 0 0 ND  4 4 

Ampicillin ND ND ND ND ND 0 18 29 1 0 0 0 0 0 0 0 0  0.5 0.5 

Amoxicillin ND ND ND ND ND 1 43 4 0 0 0 0 0 0 0 ND ND  0.25 0.25 

Gentamicin ND ND ND ND ND 17 23 8 0 0 0 0 0 0 0 0 ND  0.25 0.5 

Kanamycin ND ND ND ND ND 0 0 1 21 23 3 0 0 0 0 0 ND  2 2 

Streptomycin ND ND ND ND ND 0 0 0 0 3 36 9 0 0 0 0 ND  4 8 

Erythromycin ND ND ND ND ND 0 48 0 0 0 0 0 0 0 0 0 ND  0.25 0.25 

Vancomycin ND ND ND ND ND 0 0 2 46 0 0 0 0 0 0 0 ND  1 1 

Tetracycline ND ND ND ND ND 0 0 11 37 0 0 0 0 0 0 ND ND  1 1 

Chloramphenicol ND ND ND ND ND 0 0 0 0 0 1 47 0 0 0 ND ND  8 8 

Fosfomycin ND ND ND ND ND 0 0 0 0 0 0 0 0 0 0 0 48 (>128)  >128 >128 

Ciprofloxacin ND ND ND ND ND 0 0 0 45 2 1 0 0 0 0 ND ND  1 1 

Trimethoprim- 

Sulfamethoxazole 
0 1 46 1 0 ND ND ND ND ND ND ND ND ND ND ND ND  0.62 0.62 
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Introduction 

Listeria monocytogenes is the causative agent of listeriosis, a serious invasive 

illness that affects both humans and animals. Unlike other foodborne illnesses, 

which rarely result in fatalities, the mortality rate of listeriosis is approximately 

30% (45). In the United States, human listeriosis is known to affect approximately 

1,600 individuals and cause 255 deaths every year (72). In Japan, an average of 83 

cases of listeriosis per year has been reported (63). However, accurate numbers of 

the incidence of listeriosis are not available owing to the lack of a mandatory 

notification system. 

Meat products have been implicated as sources of listeriosis outbreaks in many 

countries (9, 27, 73). It is generally thought that cattle feces may be an important 

source of foodborne pathogens for beef meat contamination in processing plants (1); 

therefore, the reduction of L. monocytogenes at the farm level is important for 

decreasing human exposure to the bacterium. 

Investigations of molecular ecology and genetic diversity of isolates collected from 

dairy farms have previously been conducted to prevent contamination of L. 

monocytogenes in milk products and listeriosis outbreaks (4, 35, 44, 83, 88-90). 

Although deli meats were implicated in 25% of the 24 listeriosis outbreaks during 

1998–2008 in the United States (8), few studies have investigated the prevalence 

and characteristics of L. monocytogenes isolated from beef cattle farms (7, 46, 52). 

Specifically in Japan no studies on molecular epidemiology of L. monocytogenes in 
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beef cattle farms have ever been carried out. To provide basic data for control of L. 

monocytogenes at the farm level, the objective of this study was to determine the 

prevalence and molecular characteristics of the bacterium in black beef cattle feces 

collected from farms across Japan. 

Materials and Methods 

Sample collection 

Japanese black beef cattle feces were collected from farms located in 3 areas of 

Japan: northern (Hokkaido prefecture), central (Gifu and Mie prefectures), and 

southern (Oita, Miyazaki, and Kagoshima prefectures; Fig. 2) between April and 

June (spring) 2011. Furthermore, fecal samples were collected from northern area 

between July and September (summer) 2011. The numbers of tested farms and 

cattle are shown in Table 3. Fecal samples were obtained from apparently healthy 

cattle directly through the rectum of each cattle by using a clean plastic sleeve for 

each sample. Samples were chilled and transported to the laboratory, and the 

samples were analyzed within 12 h. 

Bacterial isolates 

Cold enrichment followed by selective enrichment was used to isolate L. 

monocytogenes from fecal samples (16). Briefly, fecal samples (1 g) were added to 5 

ml of Nutrient Broth (Nissui Seiyaku Co., Ltd., Tokyo, Japan) and enriched at 4C 

for 2 weeks. Next, 5 ml of enriched samples were added to 45 ml of University of 
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Vermont Modified Listeria Enrichment Broth (BD, Franklin Lakes, NJ). After 

incubation at 30C for 24 h, cultures (0.1 ml) were incubated with 10 ml of Fraser 

Broth (BD) containing Fraser Selective Supplement (Oxoid, Basingstoke, UK) at 

35C for either 24 or 48 h. Each culture (0.1 ml) was then streaked onto 

CHROMagar Listeria plates and incubated at 37C for 24–48 h. Four to 10 typical 

Listeria-like colonies with halos were selected from plates and characterized by the 

Christie, Atkins, Munch-Peterson test, -hemolysis reaction, catalase reaction, 

Gram staining, and motility test in semisolid media. L. monocytogenes isolates were 

stored in BHI with 10% glycerol at −80C. 

Serotyping of the isolates 

Serotyping was performed using commercial Listeria antisera (Denka Seiken 

Co., Ltd., Tokyo, Japan), according to the manufacturer’s recommendations. 

Pulsed-field gel electrophoresis (PFGE) analysis 

PFGE was carried out by following the Center for Disease Control and 

Prevention PulseNet protocol (28). Chromosomal DNA of L. monocytogenes was 

digested with restriction enzymes, AscI (New England BioLabs, Beverly, MA) and 

ApaI (Takara, Shiga, Japan). PFGE patterns were compared using the BioNumerics 

program (version 5.0; Applied Maths, Kortrijk, Belgium). Similarities among 

restriction fragments of isolates were determined using unweighted pair group 

method with arithmetic mean. 
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PCR of L. monocytogenes epidemic clone (EC) II and III markers 

DNA was extracted from overnight BHI cultures using a commercially prepared 

extraction preparation (InstaGene Matrix; Bio-Rad Laboratories), according to 

manufacturer’s instructions. The primers used for identification of isolates of the L. 

monocytogenes EC II and III markers have been described by Chen and Knabel (11). 

The cycling program and electrophoresis conditions have been described previously 

(31). Since none of the black beef cattle isolates had identical PFGE profiles to those 

of ECI clone, ECI marker was not investigated. 

Antimicrobial susceptibility testing 

Antimicrobial susceptibility tests were performed for 315 out of 996 L. 

monocytogenes isolates. Fourteen different antimicrobials, including penicillin, 

ampicillin, oxacillin, amoxicillin, gentamicin, kanamycin, streptomycin, 

erythromycin, vancomycin, tetracycline, chloramphenicol, fosfomycin, ciprofloxacin, 

and trimethoprim/sulfamethoxazole, were selected for susceptibility testing using 

the microbroth dilution method, according to the Clinical and Laboratory Standards 

Institute standards (13). The breakpoints were determined as described previously 

(31). 

Bacterial strains 

In total, 35 L. monocytogenes isolates from human listeriosis cases, livestock 

that had a diagnosis of listeriosis, and wild animals were used to study the 

relatedness with the isolates from black beef cattle (Table 4). 
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Statistical analysis 

All statistical analyses were performed using EZR (Saitama Medical Center, 

Jichi Medical University), which is a graphical user interface for R (The R 

Foundation for Statistical Computing, version 2.13.0). More precisely, it is a 

modified version of R commander (version 1.6-3) designed to add statistical 

functions that are frequently used in biostatistics. A chi-squared test was used to 

compare the prevalence of L. monocytogenes. Differences were considered 

significant at a significance level of p 0.05. 

Results 

Prevalence of L. monocytogenes among feces of black beef cattle 

The author surveyed farms from three areas of Japan, including northern, 

central, and southern areas. Prevalence of L. monocytogenes among feces of black 

beef cattle for each area were as follows: northern, 11.4% of 651; central, 2.8% of 

572; and southern, 2.9% of 515 (Table 3). Based on these data, the isolation rate in 

the northern area was significantly higher than that in the central or southern area 

(p 0.01). In the northern area, the isolation rate in spring was significantly higher 

than in summer (p 0.01).  

Serotyping of the isolates 

Serotyping of 996 isolates identified 1/2b as the most prevalent serotype (40.5%), 

followed by 1/2a (36.9%), 4b (21.6%), and 4ab (1.0%) (Table 5). In the northern area, 
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12.1% of the isolates were classified as serotype 4b, whereas in the central and 

southern area, 46.3% and 44.8%, respectively, were classified as serotype 4b, 

indicating a significantly lower rate of serotype 4b in the northern area (p 0.01). 

Notably, in the northern area, multiple serotypes were isolated from 60% of L. 

monocytogenes-positive farms. In addition, multiple serotypes were isolated from 

individual fecal samples from 18 cattle (data not shown), with a maximum of three 

different serotypes isolated from one sample (Fig. 3). However, in the central and 

southern area, only one kind of serotype was isolated from individual farms. 

PFGE typing of the isolates 

Of 996 L. monocytogenes isolates identified from black beef cattle, 239 were 

analyzed by PFGE. As shown in Table 5, 48 different PFGE types were detected. 

Isolates from the northern, central, and southern areas were characterized to 

consist of 43, five, and six different PFGE types, respectively. The author found that 

the isolates from the northern area were genetically diversified, with multiple 

PFGE types identified from two-thirds of positive farms in the northern area. 

Furthermore, nine PFGE types were isolated from the N11 farm, five of which were 

isolated from the same animal (Fig. 3). Dendrogram of L. monocytogenes PFGE 

types for isolates from black beef cattle, human clinical cases, animal clinical cases, 

and wild animals is shown Figure 4. The author observed that 5 of the isolates 

(strain nos. H12, D1, O03, MMS-03174, and Y25) derived from human clinical cases 

showed identical PFGE patterns to those from black beef cattle. It is worth noting 
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that two isolates from dairy cattle clinical cases (strain nos. BC07 and BC08) and 

one isolate from a sheep clinical case (strain no. BC11) were also identical to those 

from black beef cattle. Importantly, one isolate from a black beef cattle clinical case 

(strain no. BC02) shared 97.9% similarity with the isolates from black beef cattle. 

The isolates from deer (strain no. Y21) and crow (strain no. Y22) were identical to 

those from black beef cattle, as well as to those from human clinical cases. 

EC markers in the isolates 

The isolates with PFGE type 47 were found to possess ECII marker (data not 

shown). These isolates were collected from five farms, three of which were in the 

northern area and two were in the central area. Interestingly, the isolate from a 

black beef cattle clinical case (strain no. BC02) also possessed ECII marker (data 

not shown). Moreover, the isolate with PFGE type 12 collected from the northern 

area was found to possess ECIII marker.  

Antimicrobial resistance phenotypes 

The MIC distributions of penicillin (<0.12 to 0.5 µg/ml), oxacillin (2 to 8 µg/ml), 

ampicillin (<0.12 to 1 µg/ml), amoxicillin (<0.12 to 0.5 µg/ml), gentamicin (<0.12 to 1 

µg/ml), kanamycin (0.5 to 8 µg/ml), streptomycin (1 to 16 µg/ml), erythromycin 

(<0.12 to 0.5 µg/ml), vancomycin (0.5 to 1 µg/ml), tetracycline (0.25 to 1 µg/ml), 

chloramphenicol (4 to 8 µg/ml), fosfomycin (32 to >128 µg/ml), ciprofloxacin (0.5 to 4 

µg/ml), and trimethoprim/sulfamethoxazole (0.16 to 0.62 µg/ml) were found to be 

monomodal, suggesting that all isolates tested were susceptible to these antibiotics 
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(Table 6). The MIC distributions of fosfomycin were higher than the range the 

author surveyed. L. monocytogenes has been described to be naturally resistant to 

oxacillin and fosfomycin (80). 

Discussion 

In this study, to determine the prevalence and molecular characteristics of L. 

monocytogenes, fecal samples were collected from black beef cattle in farms from 

three geographically distant areas of Japan: northern, central, and southern areas. 

In the northern area, the isolation rate was found to be significantly higher than in 

the central or southern area, and black beef cattle were shedding genetically 

diversified clones in feces. Five isolates from human clinical cases and three isolates 

from animal clinical cases were identical to the isolates from black beef cattle. 

Previous studies conducted in the United States and elsewhere have shown that 

the prevalence of the bacterium in feces of beef cattle ranges from 0% to 8.3% (2, 7, 

17, 46, 48, 52). In Japan, although L. monocytogenes was previously isolated in 0% 

to 3.4% of cattle fecal samples (37, 38, 71, 78), the prevalence of L. monocytogenes in 

beef cattle among farms throughout Japan has never been examined. Since the 

investigation of livestock animals on farms is very important to elucidate the 

contaminant source of pathogenic bacteria and to reduce the carrier animals, this 

survey provides crucial data for control of L. monocytogenes at the farm level. 

In this study, the isolation rate in the northern area was found to be higher than 
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that in the central and southern areas. In a previous survey of beef-processing 

plants in the United States, Listeria species were prevalent among the hides of 

cattle presented for slaughter at plants in cooler climates and during the winter and 

spring seasons (29). These observations may be attributed to the ability of Listeria 

species to outcompete and exclude other bacterial species at low temperatures. The 

higher prevalence in the northern area is associated with cooler weather, consistent 

with the ability of Listeria species to grow at lower temperatures. 

It has been reported that silage is a source of L. monocytogenes in dairy cattle 

(35, 84). In this study, the bacterium was also isolated from the silage-fed cattle. 

Meanwhile, the bacterium was also isolated from feedlot cattle that were not fed 

with the silage (data not shown). In feedlot operations, feeder cattle that were 

introduced to feedlot farms might be the source of pathogenic bacteria. The author 

next observed that the isolates from wild animals were identical to those from black 

beef cattle. It is speculated that black beef cattle farms might be the source of L. 

monocytogenes in wild animals, and that the wild animals might spread the 

bacterium to other farms. As other studies have shown (84), it is thought that there 

might be various sources of the bacterium. Therefore, further investigation would 

be needed to reduce carrier animals of the pathogenic bacteria. 

In the northern area, the prevalence of serotype 4b was lower than that in the 

central and southern areas. In the southern area, the prevalence of serotype 1/2a 

was lower than that in the northern and central areas. It is hypothesized that the 
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difference in the distribution of serotypes may arise from the characteristics of each 

serotype. Buncic et al. (6) reported that serotype 1/2a isolates tended to be more 

resistant to the bacteriocins at 4C than serotype 4b isolates. It was also reported 

that there is varied distribution of serotypes among L. monocytogenes isolates from 

bulk tank milk in different regions of the United States (81). Therefore, difference 

in the characteristics of various serotypes might vary their abilities to get 

established in the environment. Another hypothesis is that the difference in the 

serotype distribution may be explained by the sample shortage in this investigation. 

Further investigation on a larger scale would be needed. 

Isolates from northern farms were genetically diverse, compared to those from 

central and southern farms. It is not yet clear as to why the isolates from northern 

farms, but not central and southern farms, were genetically diverse. It was 

postulated that low temperatures might affect the genetic diversity of L. 

monocytogenes in northern farms as follows. First, low temperatures might inhibit 

the growth of competing bacteria. Second, L. monocytogenes might grow more easily 

in silage, manure, and field soil, and therefore, persist in the environment. In 

addition, other strains might be introduced by feed, wild animals, or other 

contributing factors in these areas. Third, more than half of the dairy cattle in 

Japan are reared in the northern area, and the ratio of the ranch area in the 

northern area is the highest among the 3 areas. It has been reported that dairy 

cattle contribute to the amplification and the dispersal of L. monocytogenes into the 
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farm environment, and the bovine-farm ecosystem maintains a high prevalence of L. 

monocytogenes (56). 

In this study, five PFGE types were isolated from a fecal sample from one black 

beef cattle. A similar result was reported by a previous survey, in which six PFGE 

types were identified from a fecal sample of one dairy cow (4). Hence, investigating 

more than 10 isolates from a sample is a more reliable method to gauge the genetic 

diversity of L. monocytogenes. Because the author did not characterize all of the 

isolates from the black beef cattle with PFGE, further characterization of the 

isolates might be needed to elucidate more precisely the genetic diversity of L. 

monocytogenes in the black beef cattle farms. 

The isolates possessing ECII marker were isolated from five farms, three of 

which were northern farms and two were central farms, whereas the isolate 

possessing ECIII marker was isolated from a northern farm. A previous study 

showed that epidemic clonal markers might be correlated with the pathogenic 

potential and environmental persistence of the strains (23). In addition, ECII 

strains have been shown to be resistant to broad-host-range phages, when grown at 

temperatures lower than 37C; such an advantage of ECII bacteria may enhance 

their fitness in a cooler environment (42). Based on these findings, the isolates 

possessing ECII marker might have the ability to survive in various environments. 

The results show that the L. monocytogenes isolates from black beef cattle were 

susceptible to all antimicrobial agents tested, except oxacillin and fosfomycin. 
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Antimicrobial agents are used for growth promotion by improving animal 

husbandry. Unfortunately, veterinary antimicrobial use is a selective force that 

promotes the appearance and prevalence of antimicrobial-resistant bacteria in 

food-producing animals (39, 55, 75). In the Japanese black beef cattle, 44.4% of 

1,397 Escherichia coli isolates were resistant to at least one type of antibiotic (87). It 

was also shown that L. monocytogenes became resistant to antibiotics through the 

acquisition of mobile genetic elements (65). To date, there have been very few 

studies on antibiotic resistance of L. monocytogenes in Japan (61); therefore, it is 

important to protect public health by continuously monitoring antibiotic resistance 

of L. monocytogenes on black beef cattle farms.  

In conclusion, this study suggests that the black beef cattle in Japan may be a 

reservoir of genetically diversified L. monocytogenes. Moreover, it was observed 

that the prevalence of L. monocytogenes, the distribution of serotypes, as well as the 

diversity of PFGE types varied according to the area. In the northern area, it is 

necessary to monitor pathogenic bacteria that can grow at low temperature such as 

L. monocytogenes. 

Summary 

This study was conducted to determine the prevalence and molecular 

characteristics of L. monocytogenes in the feces of black beef cattle reared in 

geographically distant areas in Japan. The author surveyed 129 farms in the 
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following three areas: northern (Hokkaido prefecture), central (Gifu and Mie 

prefectures), and southern (Oita, Miyazaki, and Kagoshima prefectures) areas and 

collected 1,738 fecal samples. The data showed the following isolation rate for each 

area: northern, 11.4% of 651; central, 2.8% of 572; and southern, 2.9% of 515, 

indicating that the isolation rate in the northern area was significantly higher than 

that in the central or southern areas (p 0.01). Moreover, serotyping of 996 isolates 

identified 1/2b as the most prevalent serotype (40.5%), followed by 1/2a (36.9%), 4b 

(21.6%), and 4ab (1.0%). In the northern area, multiple serotypes were isolated from 

60% of L. monocytogenes-positive farms. In addition, multiple serotypes were 

isolated from individual fecal samples from 18 cattle. PFGE characterization of 239 

isolates detected 48 different PFGE types. The author found that isolates from 

northern farms were genetically diverse compared to those from central and 

southern farms. Five isolates from human clinical cases and three isolates from 

animal clinical cases were identical to isolates from black beef cattle. Furthermore, 

the isolates from northern and central farms were characterized to possess EC II or 

III markers. The author next showed that the isolates were susceptible to penicillin, 

ampicillin, amoxicillin, gentamicin, kanamycin, streptomycin, erythromycin, 

vancomycin, tetracycline, chloramphenicol, ciprofloxacin, and 

trimethoprim/sulfamethoxazole. Taken together, this survey provides crucial data 

regarding the prevalence and characteristics of L. monocytogenes in black beef 

cattle farms throughout Japan. 
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Figure 2. Map of Japan. The prefectures the author selected are shown in 

gray and are coded as follows: 1, Hokkaido prefecture (northern area); 2, 

Gifu prefecture (central area); 3, Mie prefecture (central area); 4, Oita 

prefecture (southern area); 5, Miyazaki prefecture (southern area); 6, 

Kagoshima prefecture (southern area)
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Table 3. Prevalence of Listeria monocytogenes in Japanese black beef cattle 

 

Areaa Seasonb 
No. of farms 

examined 

No. of positive 

farms (%) 

No. of cattle 

examined 

No. of positive 

cattle (%) 

Northern Spring 9 4 (44.4) 175 30 (17.1) 

Northern Summer 21 11 (52.4) 476 44 ( 9.2) 

Northern (total) 30 15 (50.0) 651 74 (11.4) 

Central Spring 52 5 ( 9.6) 572 16 ( 2.8) 

Southern Spring 47 4 ( 8.5) 515 15 ( 2.9) 

Total  129 24 (18.5) 1,738 105 (6.0) 

aNorthern, Hokkaido prefecture; central, Gifu and Mie prefectures; southern, Oita, Miyazaki,  

and Kagoshima prefectures 
bSpring, April through June; summer, July through September  
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Table 4. Sources and serotypes of Listeria monocytogenes isolates tested 

 

Source Serotypes 

(no. of isolates) 

References 

Human listeriosis cases 1/2a (2), 1/2b (9), 4b (11) Makino et al. (49) 

Ochiai et al.(59) 

Animal listeriosis cases  

(dairy cattle, black beef cattle,and sheep) 

1/2a (7), 1/2b (1), 4b(1) Provided by Agricultural 

Administration Division, Department 

of Agriculture, Hokkaido, Japan 

Wild animals 

 (crows, deer, and raccoon dog) 

1/2b (1), 4b (4) Yoshida et al. (91) 
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Table 5. Prevalence and characteristics of Listeria monocytogenes from black beef cattle feces 

 

aNorthern, Hokkaido prefecture; bCentral, Gifu and Mie prefectures; cSouthern, Oita, Miyazaki, 

and Kagoshima prefectures

Farm 
No. of 

cattle 

examined 

No. (%) of 

positive 

cattle 

No. of 

isolates 

Serotype 

(no. of isolates) 
PFGE type 

Northerna 

Positive farms (by name) 

N01 26 1 (3.8) 10 1/2b (10) 27 

N03 51 7 (13.7) 70 1/2a (31), 1/2b (39) 2, 6, 14, 25, 28, 31 

N05 25 3 (12.0) 30 1/2a (10), 1/2b (20) 1, 33 

N06 44 3 (6.8) 30 1/2b (20), 4ab (10) 38, 48 

N07 60 20 (33.3) 200 1/2a (148), 1/2b (52) 8, 9, 10, 24, 26 

N11 4 4 (100) 39 1/2a (25), 1/2b (12), 4b (2) 3, 4, 11, 12, 21, 22, 23, 30, 46 

N13 29 1 (3.4) 10 1/2a (10) 7 

N16 33 1 (3.0) 10 1/2a (10) 11 

N17 23 8 (34.8) 65 1/2a (3), 1/2b (52), 4b (10) 15, 24, 32, 33, 35, 45 

N18 20 1 (5.0) 10 4b (10) 40 

N19 20 5 (25.0) 45 1/2a (10), 1/2b (5), 4b (30) 5, 36, 41, 43, 47 

N21 21 4 (19.0) 39 1/2b (39) 19, 20, 33 

N27 27 6 (22.2) 60 1/2b (49), 4b (11) 33, 37, 47 

N28 30 8 (26.7) 80 1/2a (31), 1/2b (26), 4b (23) 9, 13, 33, 34, 39, 42, 47 

N30 10 2 (20.0) 15 1/2b (15) 33 

Negative farms (combined) 

15 228 0     

Total farms      

30 651 74 (11.4) 713 1/2a (278), 1/2b (339), 4b (86), 4ab (10) 

Centralb       

Positive farms (by name) 

C01 20 7 (35.0) 70 1/2a (70) 17 

C26 10 1 (10.0) 10 1/2a (10) 18 

C28 6 1 (16.7) 10 4b (10) 47 

C29 10 1 (10.0) 10 4b (10) 41, 44 

C49 10 6 (60.0) 49 4b (49) 47 

Negative farms (combined) 

47 516 0     

Total farms      

52 572 16 (2.8) 149 1/2a (80), 4b (69)  

Southernc 

Positive farms (by name) 

S07 14 7 (50.0) 60 4b (60) 43 

S27 24 1 (4.2) 10 1/2b (10) 21 

S35 10 6 (60.0) 54 1/2b (54) 25, 29, 34 

S39 20 1 (5.0) 10 1/2a (10) 16 

Negative farms (combined) 

43 447 0     

Total farms      

47 515 15 (2.9) 134 1/2a (10), 1/2b (64), 4b (60) 

Total of 3 areas 

129 1,738 105 (6.0) 996 1/2a (368), 1/2b (403), 4b (215), 4ab (10) 
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Figure 3. PFGE types and serotypes of Listeria monocytogenes isolates from cattle on the N11 farm 
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Figure 4. Dendrogram of Listeria monocytogenes PFGE types for isolates from black beef cattle (B), 

human clinical case (HC), animal clinical cases (AC), and wild animals (W). Areas are coded as follows: N, 

northern; C, central; S, southern; Fu, Fukuoka prefecture; Ku, Kumamoto prefecture; Iw, Iwate 

prefecture; Ya, Yamagata prefecture 

Strain 

no. 

Source Farm Area Serotype PFGE 

type 

AscI ApaI 
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  Table 6. Antimicrobial susceptibility of 315 L. monocytogenes isolates from black beef cattle in Japan a 

 

Antimicrobial agent 
No. of isolates susceptible at MIC（g/ml） of:  

MIC50 

（g/ml） 

MIC90 

（g/ml） 0.16 0.31 0.62 1.25 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256  

Penicillin ND ND ND ND 17 223 75 0 0 0 0 0 0 0 0 0  0.25 0.5 

Oxacillin ND ND ND ND 0 0 0 0 6 281 28 0 0 0 0 ND  4 4 

Ampicillin ND ND ND ND 7 145 155 8 0 0 0 0 0 0 0 0  0.5 0.5 

Amoxicillin ND ND ND ND 9 272 34 0 0 0 0 0 0 0 ND ND  0.25 0.5 

Gentamicin ND ND ND ND 75 189 47 4 0 0 0 0 0 0 0 ND  0.25 0.5 

Kanamycin ND ND ND ND 0 0 7 130 139 36 3 0 0 0 0 ND  2 4 

Streptomycin ND ND ND ND 0 0 0 1 49 194 70 1 0 0 0 ND  4 8 

Erythromycin ND ND ND ND 2 295 18 0 0 0 0 0 0 0 0 ND  0.25 0.25 

Vancomycin ND ND ND ND 0 0 6 309 0 0 0 0 0 0 0 ND  1 1 

Tetracycline ND ND ND ND 0 14 192 109 0 0 0 0 0 0 ND ND  0.5 1 

Chloramphenicol ND ND ND ND 0 0 0 0 0 58 257 0 0 0 ND ND  8 8 

Fosfomycin ND ND ND ND 0 0 0 0 0 0 0 0 9 14 5 287(128)  128 128 

Ciprofloxacin ND ND ND ND 0 0 15 278 20 2 0 0 0 0 ND ND  1 1 

Trimethoprim- 

Sulfamethoxazole 
1 176 138 0 ND ND ND ND ND ND ND ND ND ND ND ND  0.31 0.62 

a Antimicrobial susceptibility tests were performed for 315 of the 996 L. monocytogenes isolates. MIC50 and MIC90 are the MICs 

for 50 and 90% of the isolates, respectively. ND, analysis not done. 
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Chapter 3 

 

 

 

 

 

Prevalence and Characteristics of Listeria monocytogenes Isolates 

From Raw Meat of Japanese Black Beef Cattle in Japan 
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Introduction 

Listeria monocytogenes is the causative agent of listeriosis, a serious invasive 

illness that affects both humans and animals. L. monocytogenes is composed of 13 

serovars, of which serotypes 1/2a, 1/2b, 1/2c and 4b account for the vast majority of 

cases of human disease. In humans, listeriosis commonly affects pregnant women 

and neonates, as well as elderly and immunosuppressed individuals. Unlike other 

foodborne illnesses, which rarely result in fatalities, the mortality rate of listeriosis 

is approximately 30% (45).  

In the United States, human listeriosis affects approximately 1,600 individuals 

and causes 255 deaths each year (72). In 2011, according to the World Organization 

for Animal Health, L. monocytogenes caused 282 human listeriosis cases and 50 

deaths in France and 169 human listeriosis cases and 32 deaths in United Kingdom 

(86). In Japan, an average of 83 cases of listeriosis per year has been reported (63). 

However, accurate data for the incidence of listeriosis are not available, owing to the 

lack of a mandatory notification system. 

Meat products have been implicated as sources of listeriosis outbreaks in many 

countries. For instance, a multistate outbreak of listeriosis occurring in the United 

States in 2002 was linked to turkey deli meat (9), and a nationwide outbreak of 

listeriosis taking place in Canada in 2008 was associated with ready-to-eat meat 

products (27). In addition, a listeriosis outbreak in Denmark in 2009 was caused by 

infected beef meat from a meals-on-wheels delivery service (73). In the United 
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States, deli meats have the highest predicted relative risk of causing listeriosis (19). 

Zoonotic pathogens in meat have to be controlled through a complete and 

continuous farm-to-fork system. It is of the utmost importance to control direct and 

indirect fecal contamination of carcasses through efficient hygiene management 

systems (57). 

It is well-known that environmental persistence is a key factor for food 

contamination by L. monocytogenes and biofilms contribute to persistence (15). 

Biofilms consist of bacterial cells encapsulated in an exopolysaccharide matrix 

which allows them to adhere to each other and to surfaces, and also protects them 

from adverse conditions (74). 

In a previous study, the isolation rate of L. monocytogenes from Japanese black 

beef cattle in the northern region of the country was found to be higher than that in 

the central and southern areas of Japan. Beef cattle may be a reservoir of 

genetically diversified L. monocytogenes in Japan (32). The prevalence of L. 

monocytogenes in beef meat has been investigated in Japan (37, 60). However, 

molecular characterization of those isolates had not yet been performed. Thus, the 

purpose of this study was to determine the prevalence of L. monocytogenes, to 

understand the distribution subtypes of L. monocytogenes from beef meat, and to 

examine relatedness among the isolates from black beef cattle, beef meat, and 

human clinical cases (33). Furthermore, biofilm-forming ability of the L. 

monocytogenes isolates from beef meat and beef cattle was tested to evaluate a risk 
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of food contamination. 

Materials and Methods 

Sample collection 

A total of 315 samples of retailed Japanese beef meat were obtained from 107 

retail stores in three areas of Japan: northern (Hokkaido prefecture), central (Gifu, 

Aichi, and Mie prefectures), and southern (Fukuoka, Oita, Miyazaki, Kumamoto, 

and Kagoshima prefectures). The sampling was performed between September 2011 

and March 2012. Samples were chilled and transported to the laboratory for further 

microbiological analysis. 

Bacterial isolates 

Isolation and identification of L. monocytogenes were carried out as previously 

described (31). Meat samples (25 g) weighed into filtered stomacher bags were 

mixed for 1 min with 225 ml of University of Vermont Modified Listeria Enrichment 

Broth (BD, Franklin Lakes, NJ) in a Masticator Classic (IUL. S.A., Barcelona, 

Spain). After the samples were incubated at 30C for 24 h, cultures (0.1 ml) were 

incubated with 10 ml of Fraser Broth (BD) containing Fraser Selective Supplement 

(Oxoid, Basingstoke, UK) at 35C for either 24 or 48 h. Each culture (0.1 ml) was 

then streaked onto CHROMagar Listeria plates (CHROMagar Microbiology, Paris, 

France) and incubated at 37C for 24–48 h. Ten typical Listeria-like colonies with 

halos were selected from plates and characterized by the Christie, Atkins, 
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Munch-Peterson test, -hemolysis reaction, catalase reaction, Gram staining, and 

motility test in semisolid media. L. monocytogenes isolates were stored in Brain 

Heart Infusion medium (BHI; Difco, Detroit, MI) with 10% glycerol at -80C. 

Serotyping of the isolates 

Serotyping was performed using commercial Listeria antisera (Denka Seiken Co. 

Ltd., Tokyo, Japan), according to the manufacturer’s recommendations. 

Pulsed-field gel electrophoresis (PFGE) analysis 

PFGE was carried out by following the Center for Disease Control’s PulseNet 

protocol and a previously described protocol (31). Chromosomal DNA of L. 

monocytogenes was digested with the restriction enzymes AscI (New England 

BioLabs, Beverly, MA) and ApaI (Takara, Shiga, Japan). XbaI-digested Salmonella 

Braenderup H9812 DNA was used as a molecular weight marker. PFGE patterns 

were compared using the BioNumerics program (version 5.0; Applied Maths, 

Kortrijk, Belgium). Similarities among restriction fragments of isolates were 

determined using the unweighted pair group method with arithmetic mean. 

PCR of L. monocytogenes epidemic clone (EC) I marker 

DNA was extracted from overnight BHI cultures using a commercially prepared 

extraction preparation (InstaGene Matrix; Bio-Rad Laboratories), according to 

manufacturer’s instructions. The primers used for identification of isolates of the L. 

monocytogenes ECI marker have been described by Chen and Knabel (11). The 

cycling program and electrophoresis conditions have been described previously (31). 



 

54 

Bacterial strains 

A total of 22 L. monocytogenes isolates from human listeriosis cases were used. L. 

monocytogenes isolates were kindly provided by the following researchers: Dr. 

Makino, S. I., Obihiro University of Agriculture and Veterinary Medicine, four 

isolates (49, 63); Dr. Ueda, F., Nippon Veterinary and Life Sciences University, two 

isolates (59); Dr. Yoshida, T., Nagano Environmental Conservation Research 

Institute, 10 isolates; Dr. Nakama, A., Tokyo Metropolitan Institute of Public 

Health, two isolates; Dr. Ito, M., Sapporo Clinical Laboratory Inc., two isolates; and 

Dr. Kobayashi, K., Daiichi Clinical Laboratories Inc., two isolates. The isolates from 

human listeriosis cases consisted of two strains of serotype 1/2a, nine strains of 

serotype 1/2b and 11 strains of serotype 4b. In a previous study, the author detected 

48 different PFGE types of isolates from black beef cattle, 18 of which were serotype 

1/2a, 20 were serotype 1/2b, nine were serotype 4b, and one was serotype 4ab (32). A 

total of 47 PFGE-typed L. monocytogenes isolates (except serotype 4ab) from black 

beef cattle were used to study relatedness to isolates from beef meat and to study 

biofilm-forming ability. 

Evaluation of biofilm-forming ability by crystal violet (CV) 

The ability of L. monocytogenes strains to form biofilms was assayed using a 

previously described method, with slight modifications (3). This method involves 

forming biofilms on microtiter plates, staining them with CV, and then solubilizing 

the bound dye to measure its absorbance. Briefly, cells were grown overnight in BHI 
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broth at 37C and diluted to an optical density (OD) of 0.5 at 620 nm. Bacterial 

cultures (50 µl) were transferred to 5 ml of BHI and vortexed. An aliquot (100 µl) of 

each isolate culture was inoculated into each of the six wells of a microtiter plate 

and incubated for 24 h at 37C. BHI broth was used as the negative control. After 

incubation, the culture was removed from each well, and the plate was washed five 

times with 150 µl of sterile distilled water and air-dried. A 0.1% crystal violet (CV) 

solution (150 µl) was added to the wells and incubated at room temperature for 45 

min. The wells were then rinsed thoroughly five times with distilled water. Biofilms 

were quantified by dissolving the remaining CV with 95% ethanol, and the 

absorbance was measured at 590 nm (OD590). 

Statistical analysis 

All statistical analyses were performed using EZR (Saitama Medical Center, 

Jichi Medical University), which is a graphical user interface for R (The R 

Foundation for Statistical Computing, version 2.13.0). More precisely, it is a 

modified version of R commander (version 1.6.3), designed to add statistical 

functions that are frequently used in biostatistics. A chi-squared test was used to 

compare the prevalence of L. monocytogenes. In addition, a t-test was used to 

compare biofilm-forming abilities. Differences were considered significant at a 

significance level of p 0.05. 
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Results 

Prevalence of L. monocytogenes in beef meat 

The author surveyed 315 beef meat samples from 107 retail stores in three areas 

of Japan: northern, central, and southern areas. The following isolation rates were 

observed: northern, seven (7.1%) of 98; central, 11 (9.2%) of 120; and southern, five 

(5.2%) of 97 (Table 7). 

Serotyping of the isolates 

A total of 230 L. monocytogenes isolates were recovered from beef meat; the 

serotype distribution is summarized in Table 7. The predominant serotype was 1/2c 

(62.6%), followed by 4b (26.1%) and 1/2a (11.3%). Serotype distribution of the 

isolates differed among the three areas: serotype 4b was not isolated from the 

northern area, and 1/2a was not isolated from the southern area. Multiple serotypes, 

that is, 1/2a and 1/2c, were isolated from one beef meat sample obtained from store 

N18. Serotype 1/2c was isolated from beef meat obtained 2 and 3 weeks later from 

store N18; however, 1/2a was not isolated from the sample (Fig. 5). 

PFGE typing of the isolates 

Of 230 L. monocytogenes isolates identified from beef meat, 96 were analyzed by 

PFGE. As shown in Figure 6, the author detected 12 different PFGE types, three of 

which were serotype 1/2a, six were serotype 1/2c, and three were serotype 4b. The 

isolates serotyped 1/2c had >95% similarity each other. PFGE types 4, 5, and 10 

were isolated from multiple samples sold in different stores. Strains Me045-10 and 
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Me115-1 showed 97.8% similarity; those strains were isolated from samples of beef 

meat sold in store N18 on different dates (Fig. 5). The same genotypic clones of L. 

monocytogenes were isolated from beef meat samples, which had different 

production sites, sold in the same store (Fig. 7). 

ECI marker in the isolates 

One beef meat isolate (strain no. Me305-3) had 98.3% similarity with a strain 

isolated from a human clinical case (strain no. H11), for which ECI had been 

reported (Fig. 6) (59). Furthermore, the beef meat isolate had >94% similarity to a 

strain isolated from black beef cattle (strain no. SK19-1) (Fig. 6). These two isolates 

from beef meat and black beef cattle were found to possess an ECI marker. 

Biofilm-forming ability of the isolates from beef meat 

Biofilm-forming ability was tested by CV. This method is based on the adsorption 

of bacteria followed by staining by CV, and measuring the absorbance. A total of 60 

isolates were tested: 12 PFGE types from beef meat, 47 PFGE types from black beef 

cattle, and one ECI strain. The mean OD590 of 1/2c was higher than that of 1/2a or 

4b isolates from beef meat (Table 8); however, the difference was not significant. The 

mean OD590 of 1/2c isolates from beef meat was higher than that of 1/2b isolates 

from black beef cattle; however, the difference was not significant. The OD590 of the 

ECI strain was lower than the mean OD590 of the isolates from beef meat. 
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Discussion 

This study was conducted to determine the prevalence and molecular 

characteristics of L. monocytogenes in retailed beef. A total of 315 samples were 

purchased from retail stores in northern, central, and southern areas of Japan. L. 

monocytogenes was isolated from 7.3% of 315 beef samples. Some difference was 

observed in serotype distribution among the three areas. Furthermore, ECI strains 

were isolated from beef meat and black beef cattle. 

Previous studies conducted in the United States and elsewhere have shown that 

the prevalence of the bacterium in raw beef meat ranges from 1.6% to 24% (25, 66, 

85). In Japan, a study conducted during 1988 and 1994 showed that the prevalence 

of the bacterium in retailed beef was 34.2% (37), and another survey conducted 

during 1998 and 2003 showed that the prevalence of the bacterium in retailed beef 

meat was 15.5% (60). The prevalence determined in the present study was lower 

than that in other surveys conducted in Japan, although the results cannot be 

compared directly because of the difference between the methods. A similar 

tendency has been reported for Escherichia coli O157: the prevalence of E. coli O157 

in beef carcasses decreased after 2003 (21). Microbial contamination of beef meat 

from feces might have decreased in Japan because of hygiene management 

strategies in beef processing environment adopted to prevent outbreaks of 

foodborne pathogens. 

The predominant serotype of beef meat isolates was 1/2c, followed by 4b and 1/2a. 
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Serotype 1/2c was not isolated from black beef cattle, and serotype 1/2b was the 

predominant serotype in black beef cattle isolates (Chapter 2, (32)). This finding 

suggests that there might be a contamination source of L. monocytogenes, other 

than intestinal contents of Japanese black beef cattle. Similarly, a study reported 

that L. monocytogenes serotypes 1/2a, 1/2b and 4b were isolated from the hides of 

cows and bulls at processing plants and that serotypes 1/2a, 1/2c, and 4b were found 

on postintervention carcasses (29). The PFGE types of 1/2c isolates were highly 

similar, and the biofilm-forming ability of 1/2c isolates was relatively high. 

Furthermore, 1/2c clones were isolated from samples obtained from the same store 

on different dates, and the PFGE types of these isolates showed high similarities. 

These results suggest that the 1/2c clones might persist through beef processing via 

selection for persistence in that environment. It has been reported that in a 

simulated gastrointestinal system, the relative survival of L. monocytogenes 

serotypes 4b and 1/2a strains was higher than that of serotype 1/2c (41). This 

finding suggests that the difference in environment between the gastrointestinal 

tract and food processing plants affects the distribution of serotypes. Therefore, 

serotype 1/2c might be predominant in beef meat isolates but not in black beef cattle 

isolates. 

The same PFGE types of L. monocytogenes clones were isolated from beef meat 

samples, which varied in their production sites and were sold in the same store. 

This finding suggests the spread of the clones via the process of slicing or packing. 
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The serotype distribution of beef meat isolates differed among the three studied 

areas: serotype 4b was not isolated from the northern area and 1/2a was not isolated 

from the southern area. In a previous study on black beef cattle feces, a similar 

tendency was observed: the isolation rate of serotype 4b was significantly lower 

from the northern farms than from central and southern farms, and the isolation 

rate of serotype 1/2a was significantly lower from southern farms than from 

northern and central farms. Furthermore, ECI strains were isolated from beef meat 

and black beef cattle. These results suggest that beef cattle might be the 

contamination source of pathogenic bacteria for beef meat. ECI was implicated in 

numerous outbreaks in Europe and North America (12). In Japan, ECI was isolated 

from a case of human listeriosis and from chicken (59); however, an outbreak caused 

by ECI has never been reported. Surveillance of EC strains has hardly been 

performed in Japan (59). It is generally thought that ECI strains may have 

relatively high fitness in foods compared to other serotype 4b strains and that 

contamination may be established and may persist in processing plants (12). The 

biofilm-forming ability of ECI strains was not as high as that of other strains, 

although biofilm-forming ability may be associated with L. monocytogenes 

persistence (3). ECI strains might have other ability to survive in the 

food-processing environment. Because this study found ECI strains in beef meat 

and black beef cattle, more extensive surveillance and characterization of such 

organisms in food should be performed in Japan. In the food-processing 



 

61 

environment, it is important to prevent the contamination of L. monocytogenes from 

raw beef meat to cooked products. 

In conclusion, this study showed that ECI strains were isolated from beef meat 

and black beef cattle and that the serotype distribution of 1/2a and 4b in beef meat 

and black beef cattle varied by region. These results suggest that black beef cattle 

might be the contamination source of pathogenic bacteria for beef meat. Meanwhile, 

there might be a contamination source of L. monocytogenes, other than the 

intestinal content of black beef cattle. More extensive surveillance is needed to 

control the pathogenic bacteria through a complete and continuous farm-to-fork 

system. 

Summary 

L. monocytogenes, a foodborne pathogen, is known to cause invasive disease in 

humans and animals. In a previous study of Chapter 2, the prevalence of L. 

monocytogenes in black beef cattle reared in northern farms was higher than that of 

cattle from central and southern farms (32). Further, the L. monocytogenes isolates 

from northern farms showed more genetic diversity than isolates from central and 

southern farms. To determine the risk of contamination of beef meat by fecal L. 

monocytogenes, the prevalence and molecular characteristics of L. monocytogenes 

in retail beef meat were examined. The author obtained retail beef meat from three 

areas of Japan: northern, central, and southern areas. L. monocytogenes was 
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isolated from 7.3% of 315 beef meat samples. The isolates possessing the ECI 

marker came from beef meat and beef cattle. Some difference was observed in 

serotype distribution among the three areas. These findings suggest that fecal L. 

monocytogenes might contaminate beef meat. Gut bacteria from black beef cattle 

might be the contamination sources causing human listeriosis. The predominant 

serotype was 1/2c (62.6%), followed by 4b (26.1%) and 1/2a (11.3%). The 1/2c 

serotype was not isolated on analysis of black beef cattle. Therefore, there might be 

a contamination source of L. monocytogenes, other than the intestinal content of 

black beef cattle. Because genotypically similar L. monocytogenes clones were 

consistently isolated from the same retail store, beef meat might have been 

contaminated during the process of slicing or packaging. Further efforts for 

reducing the contamination of meat and meat products by pathogenic bacteria are 

needed.
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Table 7. Prevalence and serotype of Listeria monocytogenes in beef meat 

 

Area 
No. of samples 

examined 

No. (%) of 

positive samples 

No. of 

isolates 

No. of isolates (%) 

1/2a 1/2c 4b 

Northern 98 7 (7.1) 70 16 (22.9) 54 (77.1) 0 

Central 120 11 (9.2) 110 10 (11.1) 60 (54.5) 40 (36.4) 

Southern 97 5 (5.2) 50 0 30 (60.0) 20 (40.0) 

Total 315 23 (7.3) 230 26 (11.3) 144 (62.6) 60 (26.1) 
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Figure 5. PFGE types of Listeria monocytogenes isolates from beef meat purchased from store N18 
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Figure 6. Dendrogram of Listeria monocytogenes PFGE types for isolates from beef meat (M), human clinical cases (HC), and 

black beef cattle(B). Areas are coded as follows: N, northern; C, central; S, southern; Fu, Fukuoka prefecture. ND, not done. 
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Figure 7. PFGE types of Listeria monocytogenes isolates from beef meat purchased from stores C14 and C28 
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Table 8. Average OD590 for serotypes of Listeria monocytogenes isolates from beef meat 

and black beef cattle, based on a crystal violet destining biofilm assay 

 

Source 
Assay results 

Mean OD590 SD Range Sample size 

Beef meat     

1/2a 0.331 0.176 0.211–0.533 3 

1/2c 0.416 0.117 0.294–0.591 6 

4b 0.236 0.159 0.104–0.412 3 

Black beef cattle     

1/2a 0.376 0.147 0.182–0.614 18 

1/2b 0.344 0.126 0.048–0.562 20 

4b 0.380 0.088 0.205–0.506 9 

Human listeriosis case     

ECI 0.197   1 
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General Discussion 

L. monocytogenes is the causative agent of listeriosis, a serious invasive illness 

that affects both humans and animals. Unlike other foodborne illnesses, which 

rarely result in fatalities, the mortality rate of listeriosis is approximately 30%. In 

Japan, accurate data for the incidence of listeriosis are not available, owing to the 

lack of a mandatory notification system. The limited amount of epidemiological data 

available in Japan represents a problematic issue. Therefore, the aim of this study 

is to determine the prevalence and molecular characteristics of L. monocytogenes 

isolates in dairy and beef cattle to provide basic data for the control of L. 

monocytogenes.  

Chapter 1 provides information on analysis of the bovine colostrum for 

determining the prevalence and molecular characteristics of L. monocytogenes. 

Bovine colostrum samples were collected from dairy farms in Hokkaido, Japan. 

Sixteen (7.6%) of the 210 samples and six (28.6%) of the 21 farms were positive for L. 

monocytogenes. In many previous studies, L. monocytogenes has been detected in 

raw milk, but the prevalence of L. monocytogenes in the bovine colostrum has not 

been investigated. This survey is the first to provide data on the prevalence and 

characteristics of L. monocytogenes in the bovine colostrum. L. monocytogenes 

isolates of serotypes 1/2b and 4b were detected from colostrum samples. Multiple 

PFGE types were detected in the isolates from three farms; therefore, it is likely 

that these locations were continuously contaminated by L. monocytogenes. In Japan, 

several studies have surveyed L. monocytogenes contamination on dairy farms, but 



 

69 

the prevalence of L. monocytogenes has not yet been fully investigated on dairy 

farms. This is the first report on the detection of multiple PFGE types and serotypes 

from a single farm. Some L. monocytogenes isolates in the colostrum had PFGE 

profiles identical to those from human clinical isolates. This observation suggested 

that bovine colostrum could be a significant reservoir of L. monocytogenes that 

causes human infections. The L. monocytogenes isolates in colostrum possessed an 

ECII marker. The isolates from bovine colostrum were classified as serotypes 1/2b 

and 4b. The presence of L. monocytogenes virulence-associated genes and the PFGE 

types and serotypes of bovine L. monocytogenes isolates in the colostrum suggested 

that these strains may be able to invade host cells to cause listeriosis. 

Chapter 2 describes the analysis involving Japanese black beef cattle for 

determining the prevalence and molecular characteristics of L. monocytogenes. 

Fecal samples were collected from black beef cattle in farms from three 

geographically distant areas of Japan: northern, central, and southern areas. In the 

northern area, the isolation rate was found to be significantly higher than that in 

the central or southern area, and black beef cattle shed genetically diversified 

clones in their feces. In the northern area, the prevalence of serotype 4b was lower 

than that in the central and southern areas. In the southern area, the prevalence of 

serotype 1/2a was lower than that in the northern and central areas. The isolates 

possessing the ECII marker were isolated from five farms, three of which were 

northern farms and two were central farms, whereas the isolate possessing the 

ECIII marker was isolated from a northern farm. Five isolates from human clinical 
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cases and three isolates from animal clinical cases were identical to the isolates 

from black beef cattle. The prevalence of L. monocytogenes in beef cattle among 

farms throughout Japan has never been examined. Since investigation of livestock 

animals on farms is very important for elucidating the contamination source of 

pathogenic bacteria and to reduce the number of carrier animals, this survey 

provides crucial data for the control of L. monocytogenes at the farm level. This 

study suggests that the black beef cattle in Japan may be a reservoir of genetically 

diversified L. monocytogenes. In the northern area, it is necessary to monitor 

pathogenic bacteria that can grow at low temperatures, such as L. monocytogenes. 

Chapter 3 provides information regarding the analysis of the prevalence and 

molecular characteristics of L. monocytogenes in retail beef meat, beef cattle, and 

the human listeriosis case, performed to determine the risk of contamination of beef 

meat by fecal L. monocytogenes. The author obtained retail beef meat from three 

areas of Japan: northern, central, and southern. L. monocytogenes was isolated 

from 7.3% of 315 beef meat samples. The isolates possessing the ECI marker were 

isolated from beef meat and black beef cattle. A difference was observed in serotype 

distribution among the three areas. These findings suggest that gut bacteria from 

black beef cattle might be a contamination source and a cause of human listeriosis. 

Further examination will be required to clarify the relatedness between the isolates 

of beef cattle and beef meat. There was some difference in serotype distribution 

between beef meat and black beef cattle isolates. Therefore, there might be a 

contamination source of L. monocytogenes, other than the intestinal contents of 
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black beef cattle. Because genotypically similar L. monocytogenes clones were 

consistently isolated from the same retail store, beef meat might have been 

contaminated during the process of slicing or packaging. Further efforts for 

reducing the contamination of meat and meat products by pathogenic bacteria are 

required. 

The present study elucidates the molecular epidemiology of L. monocytogenes in 

farm animals in Japan. The results of this investigation will be useful in controlling 

L. monocytogenes through a complete and continuous farm-to-fork system. There is 

a lack of molecular epidemiological studies on L. monocytogenes in the 

food-processing environment of Japan. Further examination of L. monocytogenes 

and sanitary criteria, based on risk assessment, will be required to prevent 

outbreaks of listeriosis. 
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Conclusion 

The objective of this thesis is to determine the prevalence and molecular 

characteristics of L. monocytogenes isolates in dairy and beef cattle, in order to 

provide basic data for control of L. monocytogenes. The results obtained are 

summarized as follows: 

1. Sixteen (7.6%) of the 210 bovine colostrum samples and six (28.6%) of the 21 

farms were positive for L. monocytogenes. Characterization of L. 

monocytogenes isolates from bovine colostrum indicated that the isolates 

might have potential for causing human and animal listeriosis. 

2. Prevalence of L. monocytogenes in black beef cattle reared in northern farms 

was higher than that in cattle from central and southern farms. Further, the L. 

monocytogenes isolates from northern farms were more genetically diverse 

than those from central and southern farms. 

3. L. monocytogenes isolates from black beef cattle were found to consist of 48 

different PFGE types. Furthermore, EC strains were isolated from black beef 

cattle. The black beef cattle in Japan may be a reservoir of genetically 

diversified L. monocytogenes. 

4. L. monocytogenes isolates from beef cattle might contaminate food through 

beef meat and cause human listeriosis. 

The global prevalence of L. monocytogenes in the colostrum and milk from 

individual cows has not yet been fully investigated. This study is the first to reveal 

the prevalence of L. monocytogenes in bovine colostrum and provided crucial data to 
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help produce safe bovine colostrum products. This study is also the first to reveal 

the prevalence of L. monocytogenes in beef cattle among farms throughout Japan. 

The examination of L. monocytogenes isolates from black beef cattle across Japan 

revealed the difference in prevalence among the areas and provided extremely 

important data for performing hygienic management. Furthermore, genotyping 

data, which were obtained in this study, can be compared with the data for other 

countries and will be critical in determining the source of future foodborne 

listeriosis cases. 
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Japanese Abstract 

Listeria monocytogenes (LM)は、ヒトを含む多くの動物に病原性を示し、患者由来株の

血清型は、1/2a、1/2b、1/2c および 4b が主である。LM による食中毒は髄膜炎、敗血症、流

産などを引き起こし、死亡率は約 30%である。アメリカでは、年間約 1,600 人がリステリア症に

罹患し、約 255 人が死亡している。一方、我が国では、リステリア症の発生頻度についての統

計はなく不明である。また、集団食中毒は、北海道におけるナチュラルチーズの１事例のみで

ある。海外では乳および食肉製品が LM による食中毒の主な原因食品と推定されているが、

分子疫学的研究は殆ど行われていない。このため、乳牛および肉牛におけるLMの汚染状況

と分離株の分子疫学的性状を解析し、LMを制御するための基礎資料を提供する。 

北海道の 21 農場よりホルスタイン初乳 210 検体を採取した。北海道、中部および九州の

129 農場より黒毛和牛の新鮮糞便 1,738 検体を採取し、また、各地域の販売店より和牛肉

315検体を購入した。各検体より LM を分離し、血清型別およびパルスフィールドゲル電気泳

動法による遺伝子型別を行い、さらに、流行株（EC）マーカー遺伝子の保有状況を解析した。

初乳および黒毛和牛由来株は薬剤感受性試験を、黒毛和牛および和牛肉由来株はバイオフ

ィルム産生能試験を行った。 

初乳の 7.6％から LM が分離された。血清型は 1/2b（55％）および 4b（45%）であった。黒

毛和牛糞便の 6.0%が陽性であり、北海道、中部および九州の黒毛和牛の保菌率は、それぞ

れ 11.4、 2.8および 2.9%で、北海道の保菌率は他と比較して有意に高かった。また、血清型

は 1/2b（40.5%）が最も多く、次いで、1/2a（36.9%）、 4b（21.6%）、 4ab（1.0%）の順であっ

た。遺伝子型別の結果、北海道の分離株は遺伝子型が極めて多様で、１農場から9種の遺伝

子型の LM が分離された例もあった。市販和牛肉の 7.3% が陽性であった。血清型は、1/2c

（62.6%）が最も多く、次いで 4b（26.1%）、1/2a（11.3%）の順であった。EC マーカー遺伝子
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を保有する株が、初乳、黒毛和牛および牛肉より分離された。初乳および黒毛和牛由来株に

は、ヒト症例由来株と遺伝子型が一致する株もあった。初乳および黒毛和牛由来株は、12種

の薬剤に対して感受性であった。牛肉由来の 1/2cは、遺伝子型の多様性が低く、バイオフ

ィルム形成能が高い傾向を示した。また、同じ店舗で 2および 3週間隔で購入した牛肉から、

相同性の非常に高い遺伝子型の株が、継続して分離された例もあった。 

血清型別および遺伝子型別の結果から、初乳、黒毛和牛および牛肉由来株は、ヒトにリス

テリア症を発症させる可能性が高いことが示された。北海道の黒毛和牛の保菌率が極めて高

く、多様な遺伝子型が肉牛飼養環境に定着していると考えられる。このため、低温環境におけ

る LMに対する対策が重要である。ECマーカー遺伝子を保有する株が黒毛和牛および和牛

肉から分離されたことは、腸管由来菌が牛肉を汚染し、リステリア症を発症させる可能性が高

いことを示している。一方、黒毛和牛と和牛肉由来株の血清型分布が異なることから、腸管内

容物以外の汚染源も考えられた。また、同一店舗より継続して相同性の高い LM 株が分離さ

れたことは、和牛肉のスライス・包装工程で、継続汚染した可能性を強く示唆している。 

本研究では、初乳中の LMによる汚染状況を初めて明らかにし、安全な初乳製品を製造す

るための重要なデータを提供した。また、肉牛の LM に関する全国的な調査から、地域による

汚染状況および分子疫学的性状の相違を明らかにし、衛生管理方法を策定するための極め

て重要な資料を提供した。さらに、今回得られた遺伝子型のデータは、我が国の標準株として、

他国由来株との比較を可能にし、食中毒発生の際には、汚染源を推定する極めて重要な資

料となり得る。 


