RFERFEALE 2001 No. 1

- A Study of Computer—Based Problem Solving

Based on Equi{falent Trarisformations

Yuuichi - KAWAGUCH]I
yuuichi@tenshi. ac. jp

In order to solve a given problem by using a computer, we need an algorithm. If an
algorithm is produced with being based on human inspiration, then it is difficult to
guarantee the corectness and efficiency of the algorithm. Correctness and efficiency
are important sides of quality of algorithms. It is necessary that algorithms are
produced with being based on theories. |

A given problem is expressed by using a formal language. Algorlthms consists of
means to operate such expressed problems and means to control applications of
opefations. In this study, I only use equivalent transformations for such operations.
Equivalent transformations guarantee the correctness of algorithms. Appropriate
control of applying equivalent transformations makes algorithms efficient.

Key words I.Co_mputer—Based Problem Solving
Equivalent Transformation
Correctness of Algorithm
Efficiency of Algorithm

KRS BEFEFE SEHER

A Study Of Computer-Based Problem Solving Based On Equivalent Transformations

1 Introduction

Correctness and efficiency are important
sides of quality of algorithms. If an algo-
rithm is produced with being based on human
inspiration, then it is difficult to guarantee
both the correctness and the efficiency. It is
necessary that algorithms are produced
with being based on theories, not human
inspiration.

This note explains a programming para-
digm. In the paradigm, any equivalent trans-
formations are allowed as means of com-
puting. The correctness of algorithms is
guaranteed. Since means of computing are
selected from many equivalent transfor-
mations, it is highly possible that an efficient
algorithm 1s produced. This note explains
how to guarantee the correctness of an algo-
rithm and why an efficient algorithm can be
produced.

2 Production of Algorithm

If a method to produce algorithms is
based on human inspiration, then there is a
problem. Human inspiration is unstable. One
day a person may produce a high quality
algorithm, but in another day the same
person may produce a low quality one. In the
case, it is difficult to keep a quality of the
produced algorithm at a constant level.

In order to use algorithms as general and
stable tools for solving problems, they are
produced with a constant quality similarly to
industrial products. Algorithms must be pro-
duced with being based on theories, not
human inspiration. An algorithm that solves
a given problem efficiently may be produced
by a programmer with a great ability.
However, similarly to music or fine arts, if an
algorithm is based on an unstable human
inspiration, it is difficult to use it as a general
tool for solving problems.

Here I noticed the efficiency of algorithms as
one side of a quality of them. There is one
more important side of a quality. That is a
correctness. When an algorithm is produced
with being based on human inspiration, it is
difficult to prove that the algorithm is
correct. Let us consider, for example, solving
an equation'.' There are some elémentary
operations, such as adding a same value to
each side, which were proven as correct. If an
algorithm consist of only such elementary
operations, then it is easy to prove that the
algorithm is correct. For other cases where
there are no elementary operation proven as
it
theoretically or intuitively that an algorithm

correct, is difficult to prove either
is correct.
There are two essential points:

(1) The quality of an algorithm consists of

an efficiency and a correctness.

(2) If an algorithm is produced with being
based on human inspiration, then it is

difficult to guarantee its quality.

These points result in the following con-
clusion; algorithms must be produced auto-
matically with being based on theories.

3 Expression of Problem

When a problem is given, there is a case
where the problem is stated in a natural
language. The statement may include am-
biguities. In another case, the problem exists
only in one’s brain vaguely. In order to solve
the problem correctly, it
denote it without any ambiguity. When an

is needed to

ambiguous problem is given, it is impossible
to decide if a method for solving a problem
and a produced answer are correct or not.
We need a formal description of a given
problem. It is called the “expression” of the
problem.

A method for solving a problem, Ze., an
algorithm, can be produced only if the

REAZELE 201 No. 1

expression of it is given. Thus, the expression
of the problem is denoted before an algorithm
for solving it being produced. The expression
is independent of the algorithm.

4 Correctness

Let an expression of a p'roblem be d, and
the answer of it be a. A map f combines d
with a. Formally, I assume that a=sr(d)
holds. This note covers only an area where
the formula holds. Let a domain of f be D,
and a region of f be R.
' The map f is defined against any element
in D. An element in D is an expression of
some problem. Depending on an expression
d € D, it may be difficult or may take a long
‘time to compute f(d). In such cases, we
should not compute f(d) directly.

Here I assume the following two:

(1) ForD’C D,amapag: D’— R exists and for
d’eD’, f(d)=g({d") holds.

(2) Ford’eD’, it is easier to compute g(d”)
than to compute f(d’).

For any expression d’€ D’, it is reasonable to
use the map g rather than f for computing the
answer of the given problem.

To
de D of a problem is given, a method for

summarize, -when an expression

solving is:

1. Forde D, produce d’€ D’ by applying a
transformation ¢ to d.
We have the answer a of the transformed

" expression d’ by computing a =g (d").

If a=f(d)=f(@)=g(d") holds, then
this method is correct. From the assump-
tions a = f(d) and f(d") = g(d”) always hold.
Thus, the method for solving described above
is correct, if f(d)= f(d”) holds. This means
that ae R is kept unchanged after applying
the transformation ¢ to d €D and producin
d'eD’

When a transformation t transforms d to d’
and satisfies f(d) = f(d”), then it is called an
“equivalent transformation.”

If we use only equivalent transforma-
tions, then the method for producing d’ from
d is correct. In general, it is difficult to

produce d’€ D’ from d € D by applying an

equivalent transformation at only one time.
Computation then is a repetitious appli-
cations of equivalent transformations to the
expression d.

In order to solve a given problem,. the
problem is expressed by an expression d €D
and then d’€ D’ is produced by applying
some equivalent transformations ¢,

to d, ie.,

deD%d5d,.. . Bd,=d'eD’.

If d’e D is produced, then it is possible to
produce the answer a by a=g(d").
Since all transformations ¢;(i=1,..., n)’

are the equivalent transformation,

a=f(d)=fd)=r(dy)

=fd)=r(d)=g@")

is guaranteed. This formula guarantees the
correctness of this method for solving the
problem.

5 The ET Paradigm

I call this épproach for solving problems
the “equivalent transformation paradigm,”
or the ET paradigm for the abbreviation. The
ET paradigm does not offer any concrete
system for expressing. It only offers that a
map f combines between an expression of a
problem d and the answer a of it.

The ET paradigm assumes that there are
amap f:D—R, subset D’CD and a map ¢:
D’—R exist, and assumes that for an ex-
pression d’€ D’ it is easier to compute g(d”)
than to compute f(d").

A Study Of Computer-Based Problem Solving Based On Equivalent Transformations

The execution in the ET paradigm is a
production of d’€ D’ from the original d € D
by applying equivalent transformation re-
peatedly to the original d. This paradigm
loosely combines the expression of a given
problem and an execution.

For example, in the case of the Logic
Programming (LP) paradigm [1, 2], a pro-
blem is expressed by using definite clauses
and an execution is based on the SLD
derivation. The SLD derivation is only free to
decide an order of selecting a clause and an
atomic formula. Thus, in the LP paradigm,
an expression of a problem and an execution
are tightly combined. Even if there is a better
method for executing than a method not
based on the SLD derivation, it can not be
used. The LP paradigm guarantees the cor-
rectness of an execution, Ze., algorithm, if it is
based on SLD paradigm. The area to be
guaranteed as correct is, however, narrow.

As compared with the LP paradigm, the
ET paradigm loosely combines an expres-
sion with an execution. The ET paradigm
guarantees that the execution, ie., algorithm,
is correct, if we use only but any equivalent
transformations. The area to be guaranteed
is wide. Therefore, there is a high possibility
to find a better method for executing.

6 Example

6.1 Simultaneous Linear Equations
Let us consider solving a problem of simultanious

linear equations:

anr+apy=-c
a1+ aply=_~Co

(1)

Symbols ay,...,as, ¢; and ¢z are real num-
bers, and z and y are unknown. A problem is
to be find real numbers z and y satisfying (1).

is solved by using ma-
a ap

This problem

>, a matrix

)

trixes. Let a matrix A be (
as ax

z . yAS!
X be (>, and a matrix C be <
y C2

Suppose the inverse matrix of A exists and is
denoted as A~l.
equations (1) is denoted as AX=C,.

The simultanious linear
By
multiplying A~! to both sides from the left,
we can produce the answer.

CATTAX=A"IC
X=A"IC

There are three elementary transfor-
mations for matrixes.

E;(#): multiply all elements in the ith column
by t. |

E;j(9): add the ith column multiplied by ¢ to
the jth column.

B exchange ith and jth column.

If A is regular, mathematical theories gua-

o Ty

(n+#o0) satisfying Ty -+ - T, - A=A"! where for

k=1,...,n each 7)¢vis one of E;(8), E;j(t) and

F;.

meters. They depend on A. Here, I can not

rantee that there is a sequence Tj,..

Each Ty (k=1,...,n) has some para-

show the concrete value of them, since 4 is
abstract.

According to the ET paradigm, let us
formalize this situation. The problem is given
with a simultanious linear equations. Since
these equations are charactarized by two
matrixes A and C, I denote the expression d of

‘the problem as {4, C). The answer a is a 2X

—100—

1 matrix satisfying Aa=C. The map f is
defined as f: (P,)~ S satisfying PS=Q,
where P is any 2X2 matrix, and S and @ is
any 2X1 matrix. The domain D of f is a set
of all such pairs P, @>. The range R of f is
a set of all 2X1 matrix. If P is not regular,
then the matrix f({P, @) is undefined.

Here we have the equation f (d) =a, which
is required by the ET paradigm.

Let us consider a set D’ of all pairs {E,

. . 10
Q> where E is an unit matrix < 0 1) and @

is any 2X1 matrix. The set D’ is a subset of
D. An expression d’=<E, C’) € D’ represents

RERFALE 2001 No.1

" an equation EX =C’, ie., X = C’, where X is
. x .
<y> Thus, the answer of d’ is C’. The map
g: D’ R is defined as g: <E, @ — @. This is
“a trivial map.
Here we have f: D—R and g: D'-R,
where the relation DC D’ is satisfied and for

d’eD’ and deD it is easier to compute:

g(d”) than to compute f(d).

" There is another component demanded
by the ET paradigm: a set T of equivalent
transformations. By applying each element
of T to d€D in some times, the original
problem d is equivalently transformed into
a’eD’.

Let T be a set of the three elementary
transformations, E;(¢), E;j(t) and P;. If a

original problemd is d=<A, C) and t€ T is -

applied to d, then we have new problem
d,=(tA, tC>. In this case f(d)=f(d;) holds.
I omit the proof. Therefore, each element of
T is an equivalent transformation.

Now we have all requirements of the ET
paradigm.

It is not trivial to produce the sequence
Ti,..., ,eT satisfying Ty --- T, - A=A"1,
There are some methods for computing the
sequence, such as Gauss-Jordan’s method.
The method is not only one. The ET para-
digm allows any other method if it only uses
equivalent transformations. There may be a
more efficient method than Gauss-Jordan’s.
If so, we sholud use that.

6. 2 Discussion

In Section 6.1, according to the ET paradigm,
I formalized the problem of solving simu-
ltaneous linear equations. The original pro-
blem d =<A, C) is transformed into d’=<E,
C’> by applying some equivalent trans-
formations Tx (k= 1,...,n), and then the
~ answer of the original problem is C’. This
computation is correct. The components

required by the ET paradigm is a set

—101—

{(f:D—>R, g:D’'—-R, T> that satisfying the
condition. It explains the situation com-
pletely. v

I hope that the ET paradigm can
explain many other situations. I am re-

searching other examples.
7-Past and Present Work

I published papers about the following sub-
jects:

1. a formal language for expressing prob-
lems [3],

2. type inferences [4], and

3. higher order computations [5].

The ET paradigm does not offer any system
for expressing problems. The example shown
I used the
predicate logic that treats directly class

above uses mathematics for it.

hierarchies and substructures. Those papers
begin with constructing the system.

These resarches are examples of concrete
applications of the ET paradigm, and devote
to examine an area covered by the ET -
paradigm. If there are more examples, the
area is wider. I am also interested in the
abstract side of the ET paradigm. A set
a ={f:D—R, g:D’'—R, T> that satisfies the
conditions characterizes an area where pro-
blems are treated. When there are two sets
a; and ag, it is interesting to examine which
set covers the wider area, or to examine if the
These
resarches devote to examine whether any

two sets are homomorphic or not.

other component is necessary for the ET
paradigm to characterize the area com-
pletely.

8 Conclusion
This note explained the ET paradigm.

As to the quality, I mainly explained
about the correctness of algorithm. There

A Study Of Computer-Based Problem Solving Based On Equivalent Transformations

was another side of the quality, ie., efficiency.
I aim at producing efficient algorithms
automatically. I, however, have no prominent
result as to the efficiency.

The ET paradigm is hoped to cover a wide
area of computations, since the ET paradigm
loosely combines a problem with the answer
of it. I think that the looseness causes to find
an efficient algorithm. '

Acknowledgments

The idea of the ET paradigm originated from
Professor Akama K. I am organizing it in my
style. He helped me to publish my doctoral
thesis [6]. Discussions with Dr. Ogurisu O.
about the ET paradigm was worthwhile. The
anonymous reviewer gave me suggestive
advises. I thank all of them.

References

[1] Robert A. Kowalski. Logic for Problem
Solving. Elsevier North Holland, Inc., 1979.
translated into Japanese.

[2] John Wylie Lloyd. Foundations of Logic

Programming. Springer-Verlag, second edition,

1987.

[3] Yuuichi Kawaguchi, Kiyoshi Akama, and Eiichi

Miyamoto. Representation and calculation of

objects with classes and substructures—a sim-

ple computational framework based on logic—.

Journal of Jsai., 12(1): 48-57, 1997. in Japanese.

[4] Yuuichi Kawaguchi, Kiyoshi Akama, and Eiichi

Miyamoto. Applying program transformation

to type inference on a logic language. IEICE

Trans. on Inf. & Syst., E81-D(11):1141-1147,

November 1998.

[5] Yuuichi Kawaguchi, Kiyoshi Akama, and Eiichi

Miyamoto. Two basic objects for higher-order

expression. In M. H. Hamza, editor, Proceedings

of the ISATED International Conference:

Applied Informatics (AI’2000), pages 407-410.

flOZ"'

IASTED, February 14-17 2000.

[6] Yuuichi Kawaguchi. A Study on Formalizing
Expression and Execution Of Objects that Have
Class Hierarchy and Substructure. PhD Thesis,
Hokkaido University, May 2000. in Japanese.

