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A Matrix Representation
for Resolution in Propositional Logic
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‘Resolution’ is an algorithm for logical formulae. In this paper, logical formulae are
denoted by matrices. Resolution steps are processed by elementary transformations of
matrices. By this representation, the complexity of resolution is estimated to be finite.
Improvement of the algorithm is a subject of future work.
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|. Introduction

‘Resolution’ [Gal86, Hed04] is an algo-
rithm for logical formulae. By resolution, a
given logical formula is proven unsatisfiable
or not.

In this paper, a new representation for
logical formulae is proposed. Logical formulae
are denoted by matrices. Resolution steps are
processed by elementary transformatuons of
matrices. Though the word ‘matrix’ is also
used in papers [BE97, Bib81, Bib79], it is used
for representing a different idea from that in
this paper.

A paper [Kaw02] shows that there are a
common structure between logical problems
such as SAT, and algebraic problems such as
simultaneous equations. Simultaneous equa-
tions are solvable by an efficient method,
however, SAT is not yet. A problem of
simultaneous equations is expressed by a
matrix and is solved by transforming the
matrix expression. In this paper, matrices are
used for a representation for logical formulae
(CNF). The goal of this study is to find some
elemetary transformations for those matrices.

At the end of this paper, the complexity of
resolution by the matrix representation is
discussed. The SAT problem is proven to be
NP-complete and any method of which
complexity is in the class ‘P has not been
found yet. The method proposed in this paper

also not in the class P.

Il. Resolution

Definition 1 (CNF) A literal is a variable or a
negation (—) of a variable. A clause is a
disjunction of literals. A conjunctive normal

form (CNF) is a conjunction of clauses. (end)

Resolution is a way for showing whether
or not a given CNF is unsatisfiable.

Definition 2 (Resolution Step) It holds that
C A ANC,NAN(PVZ)A(QV Tx) is unsatisfi-
able < C,A+- ACNANEPVDINQV DA
(PV Q) is unsatisfiable, where P, @, C,, . . .,
C, are clauses and x is a variable.

The clause (PV Q) is called a resolvent of
the clauses (PVz) and (QV zx) is often
called a resolvent for the variable ‘@’

The process of adding a resolvent to the
original CNF is called a resolution step. (end)

If an empty clause is obtained after some
resolution steps for a given CNF, then the
CNF is unsatisfiable.

lll. Matrix Representation

By an example, a matrix representation of
CNF and resolution steps are shown.

A CNF ‘(v A(zvy A(TyVa) A
(myVvz)' is given. By using a matrix, the
CNF is denoted as

‘ x y z
a. 1 1 0
b.{ —1 1 0
C. 0 —1 1
d. 0 —1 -1

¢ y ¢

The names ‘a.,” ‘b. ‘c.,” ‘d’ for rows and
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names ‘z, ‘y, ‘z’ for variables (or for columns)
are placed for convenience and may be
omitted.

The symbol ‘I’ stands for the presence of
the variable. The symbol ‘-1’ stands for the
presence of the negated (—) variable. The
symbol ‘0" stands for the absence of the
variable. For example, the row ‘a.’ corresponds
to the clause ‘zVy.

For the variable ‘z, there can be one
resolvent:

e from rows ‘a.’ and ‘b.; the resolvent ‘y’

is obtained.
There is no other resolvent for the variable

W]

x.
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The result of resolution steps for the
variable ‘x’ is shown as

x Y z

al 1 1 0

b.|—-1 1 0

| 0 —1 1

d| o -1 —1

ab = e | 0 1 0

For the variable ‘y, from rows where the
symbol ‘0’ is placed in the ‘z’ column, there
can be two resolvents:

e from rows ‘c.’ and ‘e, the resolvent z’

is obtained.

e from rows ‘d.’ and ‘e.’ the resolvent

‘7z’ is obtained.
The result of the resolution steps for the

variable ‘y’ is shown as

T Y z

a. 1 1 0

b. | —1 1 0

c. 0 —1 1

d. 0 -1 -1

e. 0 1 0

c,e — f. 0 0 1
de — g 0 0 —1

For the variable ‘z,’ from rows where the
symbol ‘0’ is placed in the ‘z’ and ‘¥’ columns,
there can be one resolvent:

e from rows ‘f. and ‘g, the resolvent ‘0,

the empty clause, is obtained.

The result of resolution steps for the

variable ‘z’ is shown as

L
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The resolution steps halt. Consequently

we obtained the empty clause. The given CNF
is proven to be unsatisfiable.

IV. Discussion

1. Not unsatisfiable

For example, the resolvent of the two
clauses ‘xVyVz’' and ‘TxVvVyVvz’' for the
variable ‘x’ is the clause ‘yVvV 7yVvz.’” The
clause includes a disjunction of ‘y’ and ‘—y,’
and it is therefore not unsatisfiable. To show
this fact, the symbol  is used as follows:

| 2y =z

a. 1 1 1

b.| -1 —1 1

a,b — c 0 * 1

In the obtained clause at the row ‘c.’ the
symbol ‘*’ indicates the disjunction ‘yV 7y’
The clause is not unsatisfiable (i.e., always
satisfiable). Such clauses are not used in the
following resolution steps.

2. Complexity

Supposing that there are m variables (z,,
..., Z,) and [ clauses C,, ..., C, then initially
there are m+{ elements (i.e., the size of the
matrix) in the matrix representation, where
each element is one of 1,-1,0 and each clause is
a disjunction of some z;’s and some Tz;’s
(1<i, j<m).

Considering that we deal with only k-
SAT problems (k=<m), i.e., all the numbers of
literals in clauses are equal to k, then the
number of clauses is less than or equal to 2*.
It holds that the size of the initial matrix m- [
=m-2"<m-2™

For the variable ‘x,,’ there can be (1/2)*
= [%/4 resolvents in the worst case. In those
resolvents all x,’s have disappeared, i.e.,
represented by ‘0." In those new resolvents, for
the variable ‘x,,’ there can be (1/2-1%/4)* =
1/4° resolvents. For the variable ‘z;’ there can
be (1/2-1°/4*)* = 1%/4” resolvents, and so on.

The sum of numbers of resolvents is
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/A4 [1/43 4 oo 4 [ DR DI g
estimated to be @™ /4™ D71 and

is

l(m 1)2/4(m—1)271g2m<m71)2/4(m—1)2—1

—4.9m0m 771)2/4(7”71)2
=4- "/

:4. (2 (m—z)) (m—1)?
:4.2(771‘2)(”!—1)2

Consequently it is estimated to be 0(2”‘3).
This is the number of clauses at the end of the
calculation by matrix representation, and
shows the complexity of the resolution steps.

The size of the truth table for a £-CNF
C,N\+++AC,is 2"+k-1. This is estimated to be
o0@Q"m-2")=0(m-2*"). The method shown
in this paper is more inefficient than the
method by the truth table.

V. Conclusion

This paper shows a matrix representation
of CNF. Its resolution steps are processed by
elementary transformations of the matrix.
The complexity of the steps is shown.
[Fujo7],

about one million.

the number of
The
efficiency of the method shown in this papaer

In a paper
variables m is
is low, and it is more inefficient than the truth
table. Improvement of the method is a subject

of future work.
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